首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
林业   2篇
  2篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
We compared different potential indicators of nitrogen (N) availability across 50 beech forests growing on a wide range of soils in northeastern France. Among the 50 sites measured, high elevation acidic soils had the highest potential net N mineralization in the A horizon (PNM0–5 cm), while low elevation neutral and calcareous soils had the lowest (PNM0–5 cm). We found that (PNM0–5 cm) was negatively correlated with soil pH (R2 = 0.47***) and positively correlated with microbial C/N (R2 = 0.34***). However, when high elevation sites were excluded from analyses, the relationship between PNM0–5 cm and soil pH as well as microbial C/N became weaker (R2 = 0.23*** for both variables). We found no relationship between PNM0–5 cm and organic N concentration, soil C/N, or vegetation-based indices for N availability (Ellenberg N and Ecoplant C/N). Bivariate linear regression analyses showed that 69% of the variability in percent nitrification (%Nitrif) was explained by both soil pH (0–5 cm) and soil C/N. Percent nitrification was strongly correlated with vegetation-based indices for N availability. The Ellenberg N and R (pH index) values together explained 74% of the variation in %Nitrif. No relationship was found between %Nitrif and soil δ15N (natural abundance in 15N). Of the 76 plant species evaluated, the probability of presence of 61 plant species was significantly correlated with %Nitrif while the probability of presence of 27 plant species only was correlated with PNM0–5 cm. From these results, we believe that the use of plant community composition or the combination of soil pH and C/N are robust indicators of N availability.  相似文献   
3.
For forest ecosystems, the relationship between root biomass, root growth and soil nitrification is still debated. Following repeated findings of significant differences in soil nitrification beneath comparable stands at the Breuil experimental site, a reciprocal soil exchange experiment combining high (H)‐ and low (L)‐nitrifying stands was conducted to highlight the effect of tree root colonization on the control of nitrification. Soil percent nitrification and fine root biomass were measured in undisturbed and in transplanted soil cores after 16 and 28 months. In undisturbed soils, the fine root biomass varied by tree species and explained only 14% of the variation in percent nitrification. In transplanted soil cores, percent nitrification converged, at different rates, towards values close to those measured in the undisturbed soil at the receptor stands. On the one hand, percent nitrification increased rapidly in soil cores from L transferred to H, while soil core colonization by roots remained low during the study period. Soil cores might have been colonized by active nitrifiers from their new environment, or/and the activity of the nitrifiers originally present was less suppressed by root activity in their new environment. On the other hand, percent nitrification decreased progressively in soil cores from H transferred to L as root colonization increased. This suggests that root colonization reduced nitrifier population and activity. Our findings suggest that the often‐reported influence of forest species on soil nitrification is probably multifactorial but the tree root colonization contributes.  相似文献   
4.
Studies about nitrogen (N) mineralization and nitrification in deep soil layers are rare because N processes are considered to occur mainly in topsoil that hosts active and diverse microbial communities. This study aimed to measure the soil potential net N mineralization (PNM) and nitrification (PNN) down to 4 m depth and to discuss factors controlling their variability. Twenty-one soil cores were collected at the Restinclières agroforestry experimental site, where 14-year-old hybrid walnut trees were intercropped with durum wheat. Soil cores were incubated in the dark in the laboratory at both 6 and 25°C. The soil was a deep calcic fluvisol with a fluctuating water table. It featured a black layer that was very rich in organic matter and permanently water saturated at depths between 3.0 and 4.0 m. The mean soil mineral N content was 3 mg N kg−1 soil in the upper 0.0–0.2 m layer, decreasing until a depth of 2 m and increasing to the maximum value of 25.8 mg N kg−1 soil in the black layer. While nitrate (NO3) was the dominant form of mineral N (89%) in the upper 0.0–0.2 m layer, its proportion progressively decreased with depth until ammonium (NH4+) became almost the only form of mineral N (97%) in the saturated black layer. Laboratory soil incubation revealed that PNM and PNN occurred at all depths, although the latter remained low at 6°C. The soil nitrate content in the black layer was multiplied by 48 times after 51 days of incubation at 25°C, whereas it was almost inexistent at the sampling date. While the soil total N, the pH and the incubation temperature explained 84% of the variation in PNM, only 29% of the percent nitrification variance was explained by the incubation temperature (Tinc) and the soil C-to-N ratio. These results point out the necessity to consider soil potential net N mineralization and nitrification of deep soil layers to improve model predictions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号