首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
林业   5篇
  8篇
综合类   16篇
农作物   5篇
水产渔业   1篇
畜牧兽医   9篇
园艺   1篇
植物保护   4篇
  2018年   1篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1972年   2篇
  1967年   2篇
  1927年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.

Background

Neutrophil gelatinase–associated lipocalin (NGAL) is a protein that is used in human medicine as a real‐time indicator of acute kidney injury (AKI).

Hypothesis

Dogs with AKI have significantly higher plasma NGAL concentration and urine NGAL‐to‐creatinine ratio (UNCR) compared with healthy dogs and dogs with chronic kidney disease (CKD).

Animals

18 healthy control dogs, 17 dogs with CKD, and 48 dogs with AKI.

Methods

Over a period of 1 year, all dogs with renal azotemia were prospectively included. Urine and plasma samples were collected during the first 24 hours after presentation or after development of renal azotemia. Plasma and urine NGAL concentrations were measured with a commercially available canine NGAL Elisa Kit (Bioporto® Diagnostic) and UNCR was calculated. A single‐injection plasma inulin clearance was performed in the healthy dogs.

Results

Median (range) NGAL plasma concentration in healthy dogs, dogs with CKD, and AKI were 10.7 ng/mL (2.5–21.2), 22.0 ng/mL (7.7–62.3), and 48.3 ng/mL (5.7–469.0), respectively. UNCR was 2 × 10−8 (0–46), 1,424 × 10−8 (385–18,347), and 2,366 × 10−8 (36–994,669), respectively. Dogs with renal azotemia had significantly higher NGAL concentrations and UNCR than did healthy dogs (P < .0001 for both). Plasma NGAL concentration was significantly higher in dogs with AKI compared with dogs with CKD (P = .027).

Conclusions and Clinical Importance

Plasma NGAL could be helpful to differentiate AKI from CKD in dogs with renal azotemia.  相似文献   
2.
Excessive dietary phosphorous (P) concentrations in effluents from aquaculture present a major environmental problem. We therefore studied the effect of dietary P and vitamin D3 on P utilization by rainbow trout-fed practical diets and on P concentrations in the soluble, particulate and settleable components of the effluent from fish tanks. Rainbow trout (average weight: 78 g, initial biomass: 13 kg in 0.7 m3 tanks) were fed for 11 weeks, practical diets that varied in total P, available P, and vitamin D3 concentrations. Soluble, particulate (10–200 μm) and settleable (>200 μm) P in the effluent were sampled every 0.5–6 h for 1–3 days in the third and eleventh weeks of the experiment. Trout in all diets more than doubled their weight after 11 weeks. Increasing the concentrations of available dietary P from 0.24% to 0.88% modestly enhanced growth rate. Feed conversion ratio (FCR) and biomass gain per gram P consumed decreased as dietary P concentrations increased. Carcass P, daily P gain, and plasma P concentrations were lower in fish fed with low P diets. Soluble P concentrations in the effluent peaked immediately after and again 4–6 h after feeding, and is a linear function of available dietary P. No soluble P would be produced during consumption of diets containing less than 0.22±0.02% available P. Above this dietary concentration, soluble P would be excreted at 6.9±0.4 mg/day/kg for each 0.1% increase in available dietary P. Particulate P concentrations in the effluent were independent of dietary P concentrations. Settleable, presumably fecal, P concentrations tended to increase with dietary P concentrations. In trout fed with low P (0.24% available P, 0.6% total P) diets, 60% of total dietary P were retained by the fish and the remaining 40% were excreted in the effluent as settleable P (20–30%) and particulate or soluble P (10–20%). In trout fed with high P (0.59–0.88% available P; 0.9–1.2% total P) diets, 30–55% of total dietary P was retained by fish, and the remaining 15–25% appeared in the effluent as settleable P, 20–55% as soluble P, and 5–10% as particulate P. Vitamin D3 did not affect fish growth nor effluent P levels. Physicochemical management of aquaculture effluents should consider the effect of diets on partitioning of effluent P, the peaks of soluble P concentration following feeding, and the contributions of particulate P to total P in the effluent. Increasing our understanding of how dietary P is utilized and is subsequently partitioned in the effluent can contribute significantly towards alleviating this important environmental and industry problem.  相似文献   
3.
4.
Two experiments were conducted to determine independent effects of BW and DE intake on body composition and the partitioning of retained body energy between lipid and protein in pigs with high lean tissue growth potentials and when energy intake limited whole-body protein deposition. In a preliminary N-balance experiment involving 20 entire male pigs at either 30 or 100 kg BW, it was established that whole-body protein deposition increased linearly (P < 0.05) with DE intake at both BW. These results indicate that DE intake controlled whole-body protein deposition and that these pigs did not achieve their maximum whole-body protein deposition when fed semi-ad libitum. In the main serial slaughter experiment, 56 pigs, with a BW of 15 kg, were assigned to one of four DE intake schemes and slaughtered at 40, 65, 90, or 115 kg BW. Within DE intake schemes, DE intake was increased linearly (P < 0.05) with BW, allowing for an assessment of effects of DE intake and slaughter BW on chemical and physical body composition (carcass, viscera, blood). Between 15 and 90 kg BW, average DE intake of 16.1, 20.9, 25.2, and 28.8 MJ/d supported average BW gains of 502, 731, 899, and 951 g/d, respectively. The proportion of whole-body protein present in the carcass increased with BW and decreased with DE intake (P < 0.05), whereas the distribution of whole-body lipid between carcass and viscera was not influenced by BW and DE intake. A mathematical relationship was developed to determine the relationship between DE intake at slaughter (MJ/d) and chemical body composition in these pigs: whole-body lipid-to-protein ratio = 1.236 - 0.056 x (DE intake) + 0.0013 x (DE intake)2, r2 = 0.71. The data suggests that absolute DE intake alone was an adequate predictor of chemical body composition in this population of entire male pigs over the BW and DE intake ranges that were evaluated, simplifying the characterization of this aspect of nutrition partitioning for growth in different pig populations.  相似文献   
5.
Phosphorus is an essential nutrient for forest growth. In this study, we assessed the impact of soil extractable phosphorus using two simple extraction methods on nutrition and productivity of Norway spruce in sixteen mature forest stands on different bedrocks and soils in Bavaria, Southern Germany. Representative trees were sampled for needles, twigs, branches, stem bark, and stem wood. Total phosphorus content in the tree parts and soil phosphorus stock extractable with citric acid and sodium bicarbonate up to a soil depth of 80 cm were determined. We found that easily soil extractable phosphorus is a suitable indicator for estimating phosphorus uptake and stand productivity in Norway spruce. In contrast, organic layer phosphorus showed no significant correlation with aboveground biomass phosphorus contents. In the biomass, the highest phosphorus contents were measured in young needles and twigs, but the highest correlation with soil phosphorus was detected for phosphorus contents in needles and bark. The stock of phosphorus extracted by citric acid down to 40 cm soil depth revealed the best correlation with phosphorus in needles and bark. Therefore, as a supplemental or alternative method to needle analysis, our study suggests the use of phosphorus contents in stem bark to evaluate tree phosphorus nutrition. These results highlight the suitability of the citric acid soil extraction method to characterize plant available phosphorus in Norway spruce ecosystems.  相似文献   
6.
7.
The assessment of forest transpiration rates is crucial for determining plant-available soil water consumption and drought risk of trees. Xylem sap flux measurements have been used increasingly to quantify stand transpiration in forest ecosystems. Here, we compare this empirical approach with hydrological modeling on the basis of a stand transpiration dataset of adult beech (Fagus sylvatica), which was acquired across Bavaria, Germany, at eight forest sites. Xylem sap flux sensors were installed in five dominant trees each. Two tree to stand upscaling approaches, related to site-specific (1) sapwood area or (2) to leaf area index, were compared. The outcome was examined each in relation to process-based stand hydrological modeling, using LWF-BROOK90. Distinct relationships between tree diameter at breast height (1.30 m) and sapwood area-weighted sap flux along the radial profile became apparent across the study sites, confirming a generic allometric basis for stand-level upscaling of transpiration. The two upscaling approaches did not differ in outcome, representatively covering stand structure for comparison with modeling. Differential analysis yielded high agreement between the empirical and modeling approaches throughout most of the study period, although LWF-BROOK90 tended to overestimate sap flux measurements under low soil moisture. The two empirical approaches proved reliable for even-aged beech stands, as performance under high stand-structural heterogeneity awaits clarification. Findings advance stand-level hydrological modeling regarding coverage of stomatal behavior during temporary limitation in water availability.  相似文献   
8.
9.
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.  相似文献   
10.
Nitrogen source evaluation for potato production on irrigated sandy soils   总被引:1,自引:0,他引:1  
Ammonium sulfate (AS), ammonium nitrate (AN), urea (U), and calcium nitrate (CN) were evaluated as supplemental N sources for sprinkler irrigated potatoes on a loamy sand soil by determining N source effects on potato yield, quality, recovery of applied N in tubers, and petiole NO 3 - concentration. At the N rate required to maximize yield (224 kg N/ha), 5-year average yields obtained with AS were significantly higher than those obtained using AN, U, or CN. Average total tuber yields with AS, AN, U, and CN were 59.3, 56.2, 56.5, and 54.8 Mg/ha, respectively. Yield differences between AS and AN or CN are likely due to greater N loss through leaching from the NO 3 - -containing sources. This conclusion is supported by lower petiole NO 3 - concentrations and lower recovery of applied N in tubers when AN or CN were used. Yield differences between AS and U suggest that N applied as U is more susceptible to loss than N applied as AS on the soil used in this work. The percentage of total tuber yield in the US1A quality category was not affected by N source, but the percentage of cull tubers was higher with AS than with AN or CN. Our results indicate that potato yield and N recovery can be improved by use of AS instead of U, AN, or CN for irrigated potato production on sandy soils. Potato yield, quality, and N recovery were similar when U or AN were used as supplemental N sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号