首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
农学   2篇
  8篇
农作物   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Due mainly to alterations in plant metabolism, lack of oxygen and excess salts are disturbances that affect crop yields. In different parts of the world crops are subjected t o those disttirbances, simultaneously or successively. Our objective was to determine the effects of a winter waterlogging followed by a spring salt peak on rapeseed yield, A pot experiment, combining waterlogging and salinization was carried out. The waterlogging duration was: 0 (control), 3, 7 and 14 days and the sahnity treatments were peaks of Electrical Conductivity of 5 and 8 dSm−1 and the control. The yield started decreasingfrotn 3 days during waterlogging, mainly due to the lower number of seeds per plant. The salt peak from 5 dSm−1 affected the yield only in plants which had suffered a waterlogging lower than 7 days, showing interaction between salinity and waterlogging, Only salinity reduced oil content. The saline peak affected the K, Ca and Na concentration in plant tissues, but the effect of salinity on rapeseed could be more related to soil water potential than specific ion toxicities or imbalance.  相似文献   
2.
Despite a general consent about the beneficial contribution of arbuscular mycorrhizal fungi (AMF) on natural ecosystems, there is an intense debate about their role in agricultural systems. In this work, soybean (Glycine max L.) and sunflower (Helianthus annuus L.) field plots with different P availabilities were sampled across the Pampean Region of Argentina (> 150 samples from Mollisols) to characterize the relationship between available soil P and indigenous mycorrhizal colonization. A subsequent pot experiment with soybean and sunflower was carried out to evaluate the effect of P supply (0, 12, and 52 mg P kg–1) and AMF inoculation on AMF colonization and crop responsiveness to P in a Mollisol. Both crops showed high AMF colonization in the field (average: 55% for soybean and 44% for sunflower). While mycorrhizal colonization in soybean was significantly and negatively related to available soil P, no such trends were apparent in sunflower. Also, total biomass was 3.5 and 2.0 times higher in mycorrhizal than in nonmycorrhizal pot‐grown soybean under low‐ and medium‐P conditions, respectively. Sunflower, on the other hand, did not benefit from AMF symbiosis under medium and high P supply. While mycorrhization stimulated P‐uptake efficiency in soybean, the generally high P efficiency in sunflower was not associated with AMF symbiosis.  相似文献   
3.
ABSTRACT

A more comprehensive understanding of the mechanisms of phosphorus (P) efficiency is agronomically significant to advance in the design of crop management schemes that increase P efficiency and reduce the need of fertilizers. Phosphorus efficiency is defined as the ability of a plant to acquire P from the soil and/or to utilize it in the production of biomass or the harvestable organ. Because most parameters related to P efficiency vary according to the growth conditions and isolation of the individual effect of P efficiency is not straightforward; plants must be grown in uniform experimental conditions to obtain a fair comparison of their nutrient acquisition and utilization. In this work, we compare the ability of soybean, sunflower, and maize to utilize and acquire soil P. Field and greenhouse experiments including different P levels were conducted. The general observation was that the three species ranked differently according to the specific parameter of P efficiency considered. Maize clearly showed higher P utilization efficiency than soybean and sunflower, either expressed as biomass or as grain produced per unit of absorbed P. In turn, soybean and sunflower exhibited higher acquisition efficiency than maize. Soybean showed the shallowest root system: 69% of the total root length was concentrated in the top 20 cm of the soil. Phosphorus uptake per unit root length was rather similar among the three species, but soybean and sunflower had higher P uptake per unit of root weight. This can be explained by the higher specific root length (SRL) and specific root area (SRA) of both dicots. For example, SRL averaged 59, 94, and 34 m g?1 in field grown soybean, sunflower, and maize, respectively. The more favorable root morphology determined that soybean and sunflower can explore more soil with the same belowground biomass and absorb more P per unit of carbon invested belowground. Since the three species exhibited similar values of P uptake per unit root length, we hypothesize that the capacity of each segment of root to deplete soil P fractions is similar.  相似文献   
4.
In grasslands composed of C3 and C4 plants, a different pattern of response by the two photosynthetic types to fertilizer may change the floristic composition of the community. In this study, we evaluated the effects of an application of nitrogen (N) and phosphorus (P) fertilizer at two dates in the spring on the aerial growth of C3 and C4 grasses. Danthonia montevidensis and Stipa neesiana ( C3), and Setaria geniculata and Sporobolus indicus (C4), were selected from a native grassland of the Flooding Pampa, Argentina. Two consecutive experiments (early and late spring) were conducted in pots filled with the local soil. The C3 grasses showed no response in aerial biomass, and only minor responses in aerial concentrations of N and P, numbers of leaves and tillers, and nutrient use efficiency to an application of P or N fertilizer. In contrast, their C4 counterparts showed a consistent positive response. C4 species performance was considerably influenced by date of fertilizer application in the spring. There was on average a 1·8 and a 2·5 increase in aerial biomass in early and late spring, respectively, to fertilizer application. The later date in spring was associated with higher ambient temperatures and it appeared that temperature rather than fertilizer application was the main limiting factor for C3 species. It was concluded that the positive response in C4 species to an application of P and N fertilizer indicates that the differences between C3 and C4 species were related to a higher demand to sustain greater growth rates in C4 species.  相似文献   
5.
It has been reported for many soils that maize (Zea mays L.) has a higher soil‐P critical level than soybean (Glycine max L.) and sunflower (Helianthus annuus L). The objective of this work was to compare the rhizosphere P depletion in these three species in order to investigate if they differ in their capacity to acquire soil P. Sequential P fractionation and pH were determined in rhizosphere and nonrhizosphere soil samples from field and greenhouse experiments. Neither sunflower (the species with highest rhizosphere acidification) nor soybean or maize showed a significant relationship between P depletion and rhizosphere pH. The labile P fraction and the NaOH‐Pi fraction had lower values in the rhizosphere than in the bulk soil in 38% and 77% of the studied cases, respectively. Sunflower and especially maize presented a more intense Pi depletion than soybean. The comparison between sunflower and maize revealed that neither of them took a clear advantage over the other in terms of P depletion. Rhizosphere Pi depletion was associated with the amount of P acquired by the plants. We conclude that the accessibility to different P pools does not explain the differences in soil‐P critical levels among the three species.  相似文献   
6.
7.
Most of the research comparing the effect of different row spacing on seed yield in soybeans [Glycine max (L.) Merr.] has been focused on row spacing effects on aboveground crop characteristics such as leaf area, right interception, pod number, or biomass accumulation and their relationships with seed yield. Little work has been done on the effects of narrow‐row spacing on root distribution. Plant distribution may also affect root distribution and interroot competition, and therefore, exploration and use of soil resources. A field experiment was carried out on the Pampas (Argentina) to determine the effect of narrow‐row spacing on root distribution within the topsoil in soybean, and whether different root distributions affect phosphorus uptake. In December 1993, soybeans were planted at two row spacings, narrow rows (0.35 m) and wide rows (0.70 m). Root density was measured during seed filling (92 days after planting) at several points within the inter‐row space down to a soil depth of 30 cm. Aboveground biomass was harvested at maturity and phosphorus (P) uptake was measured. Below the row line, narrow‐row soybeans showed a greater root density than the wide row treatment at 5–10 cm depth, while roots of the wide‐row soybeans had more lateral growth. Root density at both sides of the row down to a depth of 5 cm was greater for the wide‐row treatment. Average root density for each depth for a section of 70 cm wide across the row line indicated there was no significant difference between treatments at any depth. The fewer number of rows for the wide‐row spacing was compensated by a greater lateral extension of roots within the interrow space. This compensation resulted in a similar root density at each depth for both planting patterns, narrow and wide rows. Aboveground biomass and phosphorus concentration in plant tissue at maturity were not affected by row spacing. A similar phosphorus uptake for both treatments was consistent with the lack of effect of the different plant distribution on soil exploration by roots and on aboveground biomass accumulation.  相似文献   
8.
Understanding the way in which N and P availability affects the transport of sugar and amino acids is crucial to improve grain quality and yield. Thus, in the present study, two greenhouse and field experiments were conducted with barley plants grown with different N and P availabilities to assess the dynamics of the phloem transport of assimilates in relation to the beginning of flowering and senescence. The phloem transport of assimilates decreased before the beginning of protein degradation in all treatments, but the onset of flowering and senescence varied according to the N and P availability, as evidenced by the concentrations of proteins, amino acids, and sugar and the gene expression of senescence-related proteases and all glutamine synthetase isoforms. In N-deficient plants, the phloem transport decreased before flowering, but only when P was not limiting; in N- and P-sufficient plants it decreased at flowering; and in P-deficient plants it decreased after flowering. Therefore, only N-deficient but P-sufficient plants have a post-anthesis period with high export rate of assimilates. This alteration of phenology in relation to phloem leads to important consequences in assimilate utilization, as shown by the higher yield and N content of the former compared to P-deficient plants.  相似文献   
9.
Long-term P Fertiliser application increases soil phosphorus (P) labile fractions, which can be associated with crop P uptake and grain yield and are useful to improve fertilizer recommendations. Research aims were to evaluate in long-term experiments with different P Fertiliser application in a Mollisol and a Vertisol: (a) the changes of soil P fractions and (b) the relationship between soil P fractions with long-term P Fertiliser application, with accumulated apparent P budget, grain P, total P uptake, soybean (Glycine max L.Merr.) and maize (Zea mays L.) grain yield. Soil P fractions were measured after 1 and 9 year since the beginning of the long-term experiments. Experiments included an initial Fertiliser application rate of 200 kg P ha−1 and annual P Fertiliser application rate of 36 kg P ha−1. Bray1-P, total, organic, and inorganic P in fine (<53 μm) and coarse (>53 μm) (CF) soil fractions, and in NaHCO3 extract were measured. Initial P Fertiliser application increased inorganic and total P fractions. However, Bray1-P, total P in NaHCO3 extract and in the CF were the fractions that most increased with continuous long-term P Fertiliser application in both sites. In the Mollisol, maize grain yield was unrelated to long-term P Fertiliser application. In the Vertisol, total P in NaHCO3 extract, and total and organic P in the CF were more closely related to soybean grain yield than Bray1-P. We proposed soil P indices of labile inorganic and organic P that showed close relationships with soybean grain yield and may be useful to improve the diagnosis of P soil fertility.  相似文献   
10.
In the Mesopotamia region (Argentina), rice is cropped on a wide range of soil types, and the response of rice to fertilizer application has been inconsistent even in soils with very low levels of available phosphorus. Phosphorus transformations in flooded soils depend on soil characteristics that may affect phosphorus availability. This study was conducted to determine which soil characteristics were related to the changes in P fractions during soil flooding. Soils were chosen from ten sites within the Mesopotamia region that are included in five different soil orders: Oxisols, Ultisols, Alfisols, Mollisols, and Vertisols. Soil phosphorus (P) was fractionated by a modified Hedley method before and after a 45 d anaerobic‐incubation period. Changes in the inorganic P extracted with resin depended on soil pH and were related to the exchangeable‐Fe concentration of soils (extracted with EDTA). Inorganic P extracted with alkaline extractants (NaHCO3 and NaOH) increased due to soil flooding. This increase was related to the organic‐C (OC) percentage of soils (r2 = 0.62, p < 0.01), and ranged from 13 to 55 mg kg–1. Even though previous studies showed that P associated with poorly crystalline Fe played an important role in the P nutrition of flooded rice, in this study, there was no relationship between ammonium oxalate–extractable Fe and P changes in soils due to flooding. Our results suggest that in the Mesopotamia region, changes in P fractions due to soil flooding are related to soil OC, soil pH, and soluble and weakly adsorbed Fe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号