首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266657篇
  免费   16177篇
  国内免费   1927篇
林业   24338篇
农学   14711篇
基础科学   3524篇
  44086篇
综合类   32139篇
农作物   17927篇
水产渔业   17155篇
畜牧兽医   99045篇
园艺   7310篇
植物保护   24526篇
  2021年   3142篇
  2020年   3433篇
  2019年   4189篇
  2018年   4379篇
  2017年   5053篇
  2016年   5179篇
  2015年   4908篇
  2014年   6349篇
  2013年   17067篇
  2012年   7495篇
  2011年   9332篇
  2010年   8401篇
  2009年   8850篇
  2008年   8516篇
  2007年   7467篇
  2006年   7985篇
  2005年   7082篇
  2004年   6703篇
  2003年   6336篇
  2002年   5653篇
  2001年   6358篇
  2000年   5904篇
  1999年   5449篇
  1998年   4146篇
  1997年   4193篇
  1996年   3918篇
  1995年   4512篇
  1994年   3889篇
  1993年   3631篇
  1992年   4356篇
  1991年   4408篇
  1990年   4143篇
  1989年   4190篇
  1988年   3659篇
  1987年   3759篇
  1986年   3717篇
  1985年   3994篇
  1984年   3668篇
  1983年   3480篇
  1982年   2884篇
  1981年   2814篇
  1980年   2768篇
  1979年   3096篇
  1978年   2818篇
  1977年   2632篇
  1976年   2460篇
  1975年   2307篇
  1974年   2492篇
  1973年   2469篇
  1972年   2205篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
以海南岛为研究区域,选用5个大气环流模式(GCMs)1970−1999年的逐日输出数据和同期地面气象观测数据,使用空间插值降尺度到0.5°×0.5°格网。以格网单元为基础,应用系统误差修订(修正值法或比值法)和多模式集合平均方法(贝叶斯模型平均法BMA或等权重平均法EW),训练与验证GCMs输出值并进行综合修订。在此基础上,分析RCP2.6、RCP4.5和RCP8.5情景下,未来海南岛近期(2020−2059年)和远期(2060−2099年)农业水热资源,包括年平均气温、1月平均气温、≥10℃积温、≥20℃积温、年降水量、1月降水量和≥20℃界限温度生长期间降水量的变化特征。结果表明:GCMs输出值的系统误差和BMA权重系数在格网间存在较大的空间差异,且GCMs输出值低估逐日最高气温约3.55℃,高估逐日最低气温约1.19℃,逐日降水量仅为观测值的54.35%。基于格网的综合修订,可有效降低GCMs输出值在空间上的不确定性,BMA与EW的修订结果相似,均优于单一GCM模式。通过格网BMA综合修订后,最高气温、最低气温和降水量在验证期的相关系数r分别约提升0.10、0.07和0.06;均方根误差RMSE分别约降低2.38℃、1.01℃和1.01mm;较单一GCM相对观测值的偏差平均约减少3.25℃、1.13℃和25.67mm。未来海南岛农业热量资源在空间上主要表现为从中部向外围逐渐升高,高温主要分布在南部至西部沿海地区,年平均气温的增幅全岛较为接近,1月平均气温、≥10℃积温和≥20℃积温的增幅分别表现为由东向西、由北向南和由中部向外围递减。在时间上,RCP8.5情景下所有农业热量资源均为极显著增加且增温最快,RCP4.5情景为先增加后平缓,RCP2.6情景较为平缓,远期无显著增温。未来海南岛降水资源在空间上转为由东向西逐步递减的格局,南部和北部沿海地区降水变率增加,西部和中部降水变率减少,在时间上无显著变化趋势。随着未来海南岛气候变暖和降水格局的改变,农作物适宜种植面积扩大,会对农业生产带来巨大挑战,应提前布局,做好趋利避害。  相似文献   
2.
A large, firm, multi-cystic mammary gland mass grew slowly over 4 y in a 12-y-old, female Finn–Shetland cross sheep. A diagnosis of epithelial malignancy was suspected following fine-needle aspiration cytology at 30 mo after initial observation. The sheep was euthanized when the flock was downsized 18 mo later. A field postmortem examination revealed a large mammary mass, but an absence of metastases to internal organs. Imprint cytology of the mammary tissue supported a benign proliferative process. Histologically, mammary tissue was obliterated by cystic, tubular, and papillary adenomatous arrangements of mammary epithelium, with an anaplastic component, consistent with mammary carcinoma arising in an adenoma. IHC showed strong nuclear positivity to the antibody against progesterone receptor and minimal positivity to the antibody against estrogen receptor alpha expression. Intrinsic subtyping for basal or luminal epithelial origin was attempted through adaptation of companion animal IHC classification panels; high- and low-molecular-weight cytokeratins (CK5, CK8, CK18) failed to stain, but p63 expression for basal epithelium was positive.  相似文献   
3.
Trout and charr, members of the salmonid family, have high conservation value but are also susceptible to anthropogenic threats in part due to the specificity of their habitat requirements. Understanding historical and future threats facing these species is necessary to promote their recovery. Of freshwater trout and charr in the Canadian Rocky Mountain region, westslope cutthroat trout (Oncorhynchus clarkii lewisi), bull trout (Salvelinus confluentus; a charr species) and Athabasca rainbow trout (Oncorhynchus mykiss) are of conservation concern. And indeed, range contractions and declining populations are evident throughout much of their ranges. Range contraction was most evident in the southern Alberta designatable unit (DU) of westslope cutthroat trout. Diminished populations were also evident in the downstream watersheds of the Alberta bull trout range, and throughout the Athabasca rainbow trout range. We assessed historical and future threats to evaluate the relative importance of individual threats to each DU and compare their impact among species. Individual threats fall into the broad categories of angling, non-native species and genes, habitat loss and alteration, and climate change. Severity of each threat varies by DU and reflects the interaction between species’ biology and the location of the DU. Severity of threats facing each DU has changed over time, reflecting extirpation of native populations, changes in management and industry best practices, expansion of non-native species and progressing climate change. The overall threat impact for each DU indicates a high probability of substantial and continuing declines and calls for immediate action.  相似文献   
4.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   
5.
黄瓜在我国蔬菜产业中占有重要地位,然而连片种植、重茬栽培等条件下容易滋生病菌,尤其是随着我国保护地蔬菜生产规模的扩大,棚室内的温湿度条件更利于病害的发生与流行,黄瓜生产上面临着严重的病虫害威胁,包括生理性病害、感染性病害及虫害等。本文从抗病品种选育的角度分析了黄瓜病害抗病品种选育技术,并简要介绍了其他防治方法,展望了相关研究的发展方向,为黄瓜病虫害的防治提供参考。  相似文献   
6.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   
7.
Carbon storage in the soils on the Qinghai–Tibetan Plateau plays a very important role in the global carbon budget. In the 1990s, a policy of contracting collective grasslands to smaller units was implemented, resulting in a change from the traditional collective grassland management to two new management patterns: a multi‐household management pattern (MMP: grassland shared by several households without enclosures) and a single‐household management pattern (SMP: grassland enclosed and used by only one household). In 2016, 50 MMP and 54 SMP winter pastures on the Qinghai–Tibetan Plateau were sampled to assess the differences in soil organic carbon (SOC) between the two management patterns. Results showed that average SOC was significantly greater under MMP than under SMP, with an estimated 0.41 Mg C/ha/yr lost due to SMP following the new grassland contract. Based on the government's grassland policy, four grassland utilization scenarios were developed for both summer and winter pastures. We found that if the grassland were managed under SMP, likely C losses ranged between 0.31 × 107 and 6.15 × 107 Mg C/yr across the Qinghai–Tibetan Plateau relative to MMP, which more closely resembles pre‐1990s grassland management. Previous estimates of C losses have only considered land use change (with cover change) and ignored the impacts driven by land management pattern changes (without cover change). The new data suggest that C losses from the Qinghai–Tibetan Plateau are greater than previously estimated, and therefore that the grassland contract policy should be reviewed and SMP households should be encouraged to reunite into the MMP. These findings have potential implications for land management strategies not only on the Qinghai–Tibetan Plateau but also other grazing regions globally where such practices may exist.  相似文献   
8.
In the oldest commercial wine district of Australia, the Hunter Valley, there is the threat of soil salinization because marine sediments underlie the area. To understand the risk requires information about the spatial distribution of soil properties. Electromagnetic (EM) induction instruments have been used to identify and map the spatial variation of average soil salinity to a certain depth. However, soils vary with depth dependent on soil forming factors. We collected data from a single‐frequency and multiple‐coil DUALEM‐421 along a toposequence. We inverted this data using EM4Soil software and evaluated the resultant 2‐dimensional model of true electrical conductivity (σ – mS/m) with depth against electrical conductivity of saturated soil pastes (ECp – dS/m). Using a fitted linear regression (LR) model calibration approach and by varying the forward model (cumulative function‐CF and full solution‐FS), inversion algorithm (S1 and S2), damping factor (λ) and number of arrays, we determined a suitable electromagnetic conductivity image (EMCI), which was optimal (R2 = 0.82) when using the full solution, S2, λ = 3.6 and all six coil arrays. We conducted an uncertainty analysis of the LR model used to estimate the electrical conductivity of the saturated soil‐paste extract (ECe – dS/m). Our interpretation based on estimates of ECe suggests the approach can identify differences in salinity, how these vary with parent material and how topography influences salt distribution. The results provide information leading to insights into how soil forming factors and agricultural practices influence salinity down a toposequence and how this can guide soil management practices.  相似文献   
9.
The present study was designed to investigate the effects of diets containing advanced soy products (enzyme‐treated soy and fermented soy) or corn protein concentrate (CPC) in combination with porcine meal (PM) to completely replace poultry byproduct meal (PBM) on growth performance, body composition, and distal intestine histology of Florida pompano, Trachinotus carolinus. Four experimental diets were formulated to be isonitrogenous and isolipidic, to contain 400 g/kg crude protein and 80 g/kg lipid. A reference diet (PBM diet [PBMD]) contained 150 g/kg PBM and 495 g/kg soybean meal (SBM), and three test diets were formulated replacing PBM with 15 g/kg of CPC (CPC diet [CPCD]) or replacing all SBM and PBM with 535 g/kg fermented soy (fermented soybean meal diet [FSBMD]) or 451.3 g/kg enzyme‐treated soy (enzyme‐treated soybean meal diet [ESBMD]). All three test diets were supplemented with 38 g/kg of PM. Diets were fed based on a percentage of bodyweight adjusted after sampling the fish every 2 weeks to triplicate groups of Florida pompano juveniles (mean weight 8.06 ± 0.22 g). After 8 weeks of feeding, fish fed CPCD and ESBMD performed equally well in terms of final body weight, thermal growth coefficient, and percentage weight gain in comparison to fish fed PBMD. In all cases, feeding FSBMD resulted in poor feed conversion and lower feed intake compared to other treatments. Protein retention efficiency, whole‐body proximate composition, phosphorus, sulfur, potassium, magnesium, calcium, sodium, and zinc contents were not significantly influenced by the dietary treatments. The results obtained in the present histological study showed no significant differences in the thickness of serous layer, muscular layer, and submucosal layer of the intestine among treatments. Fish fed CPCD showed a significant widening of the lamina propria with an increase of cellular infiltration and higher presence of goblet cells compared to other dietary treatment. Based on these results, 451 g/kg ESBM or combination of 150 g/kg of CPC and 495 g/kg SBM supplemented with 38 g/kg PM can be utilized to develop a practical diet for juvenile Florida pompano without impacting growth, nutritive parameters, and several distal intestine health parameters.  相似文献   
10.
Excessive use of nitrogen(N) fertilizers in agricultural systems increases the cost of production and risk of environmental pollution. Therefore, determination of optimum N requirements for plant growth is necessary. Previous studies mostly established critical N dilution curves based on aboveground dry matter(DM) or leaf dry matter(LDM) and stem dry matter(SDM), to diagnose the N nutrition status of the whole plant. As these methods are time consuming, we investigated the more rapidly determined leaf area index(LAI) method to establish the critical nitrogen(N_c) dilution curve, and the curve was used to diagnose plant N status for winter wheat in Guanzhong Plain in Northwest China. Field experiments were conducted using four N fertilization levels(0, 105, 210 and 315 kg ha-1) applied to six wheat cultivars in the 2013–2014 and 2014–2015 growing seasons. LAI, DM, plant N concentration(PNC) and grain yield were determined. Data points from four cultivars were used for establishing the N_c curve and data points from the remaining two cultivars were used for validating the curve. The N_c dilution curve was validated for N-limiting and non-N-limiting growth conditions and there was good agreement between estimated and observed values. The N nutrition index(NNI) ranged from 0.41 to 1.25 and the accumulated plant N deficit(N_(and)) ranged from 60.38 to –17.92 kg ha~(-1) during the growing season. The relative grain yield was significantly affected by NNI and was adequately described with a parabolic function. The N_c curve based on LAI can be adopted as an alternative and more rapid approach to diagnose plant N status to support N fertilization decisions during the vegetative growth of winter wheat in Guanzhong Plain in Northwest China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号