首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
林业   1篇
农学   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 125 毫秒
1
1.
In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.  相似文献   
2.
With the global bioenergy boom, the planting of jatropha (Jatropha curcas) was widely promoted by the private sector and non-government organizations as one of the candidate tree species for bioenergy in Kenya. This was motivated by the belief that it grows easily with minimal management requirements. The present study attempts to determine whether management practices by smallholder farmers, which are heterogeneous, are optimal for jatropha yields in Kenya. A survey conducted in different agro-ecological zones showed that yields are very low under Kenyan farm conditions. Regardless of the age and management condition, 41 % of the farmers obtained no seed yield, while 79 % obtained up to 0.1 kg/tree. This is dismal in comparison with the figures (up to 2.0 kg/tree) reported from elsewhere for 1–5 year old trees grown under similar conditions. Examination of farmer management practices indicated that irrigation, manuring and weeding, in order to maximize yields, could be offset by misapplication of other components especially, selection of planting materials, timing of planting and choice of intercrops during the establishment phases. This indicates that the anticipated high yields have not been achieved partly because growers are still using unimproved germplasm, management practices are sub-optimal, and the biophysical boundaries of high jatropha yield are poorly defined. Thus at the current stage, jatropha should not be grown by smallholder farmers in Kenya because of low or dismal productivity. If jatropha is to play a role in the pro-poor bioenergy development, future projects need to identify management recommendations that optimize yields. This also needs to take into consideration the preferences and constraints of farm households on labor and land allocation to other farm and livelihood activities.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号