首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
林业   1篇
农学   2篇
  4篇
综合类   2篇
  2018年   3篇
  2015年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 218 毫秒
1
1.
Grain sorghum is often damaged by rain in the field and severely infected by grain mold, which includes Aspergillus infection and aflatoxin production. The objective of the study is to investigate the extent of aflatoxin production with Aspergillus infection in vitro in different sorghum genotypes with different pericarps, red, yellow, and white, the physical and chemical characteristics of grain during infection, and the changes in grain polyphenols and phytic acid in comparison to maize and groundnut. The physical characters and biochemical composition of sorghum grain contribute to make it less susceptible to Aspergillus infection and aflatoxin contamination compared to maize and groundnut. The lowest amounts of aflatoxin and ergosterol were observed in genotypes with red pericarp, whereas higher amounts of aflatoxin and ergosterol were found in white genotypes followed by maize and groundnut. All of the red genotypes differ in polyphenol composition and aflatoxin produced, showing resistance to mold damage. Another indication of resistance in red genotypes was the delayed peaking of aflatoxin production (9 days after infection). In red sorghum genotypes there was a significant, positive correlation existing between polyphenol content and aflatoxin produced at 3 and 6 days after infection, the r values being 0.589 and 0.513, respectively. The starch content decreased whereas the protein content in all sorghum genotypes increased during infection. Maximum phytic acid was observed in white sorghum genotypes. Phytic acid in yellow genotypes was found to have a significant negative correlation (r = -0.569) with aflatoxin produced.  相似文献   
2.
A widely grown but rust susceptible Indian wheat variety HD2932 was improved for multiple rust resistance by marker‐assisted transfer of genes Lr19, Sr26 and Yr10. Foreground and background selection processes were practised to transfer targeted genes with the recovery of the genome of HD2932. The near‐isogenic lines (NILs) of HD2932 carrying Lr19, Sr26 and Yr10 were individually produced from two backcrosses with recurrent parent HD2932. Marker‐assisted background selection of NILs with 94.38–98.46% of the HD2932 genome facilitated rapid recovery of NILs carrying Lr19, Sr26 and Yr10. In the BC2F2 generation, NILs were intercrossed and two gene combinations of Lr19+Yr10, Sr26 + Yr10 and Lr19+Sr26 were produced. A total of 16 progeny of two gene combinations of homozygous NILs of HD2932 have been produced, which are under seed increase for facilitating the replacement of the susceptible HD2932 with three of the sixteen improved backcross lines with resistance to multiple rusts.  相似文献   
3.
In budding yeast, phosphate starvation triggers inhibition of the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) complex by the CDK inhibitor Pho81, leading to expression of genes involved in nutrient homeostasis. We isolated myo-d-inositol heptakisphosphate (IP7) as a cellular component that stimulates Pho81-dependent inhibition of Pho80-Pho85. IP7 is necessary for Pho81-dependent inhibition of Pho80-Pho85 in vitro. Moreover, intracellular concentrations of IP7 increased upon phosphate starvation, and yeast mutants defective in IP7 production failed to inhibit Pho80-Pho85 in response to phosphate starvation. These observations reveal regulation of a cyclin-CDK complex by a metabolite and suggest that a complex metabolic network mediates signaling of phosphate availability.  相似文献   
4.
Inositol pyrophosphates are a diverse group of high-energy signaling molecules whose cellular roles remain an active area of study. We report a previously uncharacterized class of inositol pyrophosphate synthase and find it is identical to yeast Vip1 and Asp1 proteins, regulators of actin-related protein-2/3 (ARP 2/3) complexes. Vip1 and Asp1 acted as enzymes that encode inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase activities. Alterations in kinase activity led to defects in cell growth, morphology, and interactions with ARP complex members. The functionality of Asp1 and Vip1 may provide cells with increased signaling capacity through metabolism of IP6.  相似文献   
5.
The use of herbal drugs for the prevention and treatment of various health ailments has been in practice from time immemorial. Generally it is believed that the risk associated with herbal drugs is very less, but reports on serious reactions are indicating to the need for development of effective marker systems for isolation and identification of the individual components. Standards for herbal drugs are being developed worldwide but as yet there is no common consensus as to how these should be adopted. Standardization, stability and quality control for herbal drugs are feasible, but difficult to accomplish. Further, the regulation of these drugs is not uniform across countries. There are variations in the methods used across medicine systems and countries in achieving stability and quality control. The present study attempts to identify the evolution of technical standards in manufacturing and the regulatory guideline development for commercialization of herbal drugs.  相似文献   
6.
Increasing genetic variation beyond natural variation is an important aim in plant breeding. In the past 70 years, random mutagenesis by irradiation or by chemicals has created numerous mutants which have been frequently used in breeding. However, their application is hampered by the mutational load due to many background mutations. In the past 10 years, new techniques for site‐directed mutagenesis have been introduced to plant breeding which are commonly referred to as “genome editing.” Among these, the CRISPR/Cas9 system turned out to be the most efficient and easy to apply. DNA is cleaved by a nuclease precisely at a target site where a mutation is likely to be beneficial. The DNA is healed by the cellular repair system either by error‐prone non‐homologous end joining or by homologous recombination, by which small DNA fragments can be inserted at the target site. In this review, we describe the application of targeted mutagenesis to crop plants and the modification of agronomically important traits, which could have direct impacts on plant breeding.  相似文献   
7.
This study investigates the efficiency of seaweed liquid fertilizer (SLF) prepared from combinations of different seaweeds (Sargassum polyphyllum, Turbinaria ornata, Gelidiopsis sp., Padina tetrastomatica, Gracilaria corticata) as a stimulant for the growth of Vigna radiata (Mung) as well as its antagonistic activity against fungal pathogens (Alternaria solani, Rhizoctonia solani., Sarocladium oryzae). 100% SLF was prepared, which was further diluted to 60%, 40%, and 20%. Seeds were soaked in four different concentrations of the SLF (20%, 40%, 60%, and 100%) for 12 hr and planted. After 60 d, the root and shoot length were increased by 14% and 16%, respectively, with SLF (100%). The carbohydrate and protein concentrations were also increased by 70% and 86%, respectively, at 100% SLF. The concentration of chlorophyll a, chlorophyll b, and carotenoids were found to be increased by 20%, 43%, and 28%, respectively, with 100% SLF. Further, the SLF (60% and 100%) successfully inhibited the growth of fungal pathogen A. solani but the other tested strains were found to be resistant. The present study indicates that 100% SLF concentration acts as both biostimulant and biofungicide for A. solani and thus, this SLF could be used as a potential alternative to the chemical fertilizers.  相似文献   
8.
Gum kondagogu ( Cochlospermum gossypium) is a tree exudate gum that belongs to the family Bixaceae. Compositional analysis of the gum by HPLC and LC-MS revealed uronic acids to be the major component of the polymer ( approximately 26 mol %). Furthermore, analysis of the gum by GC-MS indicated the presence of sugars such as arabinose (2.52 mol %), mannose (8.30 mol %), alpha- d-glucose (2.48 mol %), beta- d-glucose (2.52 mol %), rhamnose (12.85 mol %), galactose (18.95 mol %), d-glucuronic acid (19.26 mol %), beta- d-galactouronic acid (13.22 mol %), and alpha- d-galacturonic acid (11.22 mol %). Gum kondagogu, being rich in rhamnose, galactose, and uronic acids, can be categorized on the basis of its sugar composition as a rhamnogalacturonan type of gum. The rheological measurements performed on the gum suggest that above 0.6% (w/v) it shows a Newtonian behavior and shear rate thinning behavior as a function of gum concentration. The viscoelastic behavior of gum kondagogu solutions (1 and 2%) in aqueous as well as in 100 mM NaCl solution exhibits a typical gel-like system. The G' (viscous modulus)/ G' (elastic modulus) ratios of native gum kondagogu (1 and 2%) in aqueous solution were found to be 1.89 and 1.85 and those in 100 mM NaCl to be 1.54 and 2.2, respectively, suggesting a weak gel-like property of the polymer. Crossover values of G' and G' were observed to be at frequencies of 0.432 Hz for 1% and 1.2 Hz for 2% for native gum in aqueous condition, indicating a predominantly liquid- to solid-like behavior, whereas crossover values of 2.1 Hz for 1% and 1.68 Hz for 2% gum in 100 mM NaCl solution suggest a larger elastic contribution.  相似文献   
9.
Triticum militinae Zhuk. et Migusch. belongs to timopheevii [Triticum timopheevii (Zhuk.) Zhuk.] group of wheats with 2n = 4x = 28 chromosomes and genome formula AtAtGG. Triticum militinae Zhuk. et Migusch. is known to carry resistance to fungal diseases including rusts and powdery mildew. Genes from timopheevii wheat can be incorporated into cultivated wheat by either direct hybridization or through development of amphiploids. Three T. militinae derived introgression lines (ILs) Triticum Militinae Derivative (TMD) 6-4, TMD7-5 and TMD11-5 were selected for the current study based on cytological stability. All three ILs showed resistance against wide spectrum of Indian pathotypes of leaf rust. More than 1200 SSR markers were used for genotyping of ILs and parental lines. The ILs showed variable and multiple introgressions in different chromosomes of A, B and D genome of wheat. The introgression points were distributed mostly in the distal regions though significant introgressions were also observed in proximal regions of some chromosomes. The extent of introgression in ILs TMD6-4, TMD7-5 and TMD11-5 was 2.8, 8.3 and 8.6% respectively. The set of ‘informative markers’ in the Molecularly Tagged Chromosome Regions (MTCR) of T. militinae origin can also be used in future for tagging of genes associated with traits of economic importance apart from leaf rust resistance. The transferability of Triticum aestivum L. SSR markers to T. militinae was 96.4% for A genome, 95.8% for B genome and 84.3% for D genome. Transferability of wheat SSR markers to T. militinae can be used in preparing genetic maps in timopheevii group of wheats.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号