首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   3篇
基础科学   1篇
  3篇
综合类   2篇
  2024年   1篇
  2018年   1篇
  2016年   4篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
柑桔叶片黄龙病光谱特征选择及检测模型   总被引:6,自引:4,他引:2  
为探索高光谱技术诊断黄龙病及分类的可行性,通过变量筛选方法组合为高维数据实用化提供参考。采集柑桔叶片高光谱图像并进行普通(polymerase chain reaction,PCR)鉴别分为轻度、中度、重度、缺锌和正常5类样品。用无信息变量消除算法(uninformative variable elimination,UVE)剔除无关信息,组合遗传算法(genetic algorithm,GA)和连续投影算法(successive projections algorithm,SPA)筛选变量,对数据进行降维。结合极限学习机(extreme learning machine,ELM)和最小二乘支持向量机(least squares support vector machine,LS-SVM)构建柑桔黄龙病判别模型。对预测样品进行诊断分类,来评价模型判别能力。经对比发现,UVE组合SPA筛选变量后的LS-SVM模型效果最好,该模型以Link_kernel函数为核函数,惩罚因子(γ)最小为1.07,误判率最低为0。用全谱作输入变量时LS-SVM模型复杂程度最高且预测能力最差,误判率最高为11.9%,可能是包含无用信息和冗余信息变量造成的。研究显示,UVE组合SPA筛选变量,结合LS-SVM对柑桔黄龙病诊断并分类具有一定可行性,为高维度数据实用化提供一定参考价值。  相似文献   
2.
赣南脐橙可溶性固形物近红外光谱在线无损检测   总被引:1,自引:0,他引:1  
通过应用近红外漫透射光谱技术结合最小二乘支持向量机等算法,探索脐橙可溶性固形物含量在线无损检测的可行性。139个样本被分成建模集和预测集(103∶36),分别用于建立检测模型和验证检测模型的预测能力。漫透射近红外光谱,经过一阶微分、多元散射校正和移动窗口平滑组合预处理后,分别建立了偏最小二乘、偏最小二乘支持向量机模型,经比较发现,偏最小二乘支持向量机模型的预测能力更强,模型预测的均方根误差和相关系数分别为0.6423%、0.9059。通过对比发现,主成分分析和径向基函数有利于提高最小二乘支持向量机模型的预测能力。结果表明:采用近红外漫透射光谱技术结合最小二乘支持向量机算法能够很好地实现脐橙可溶性固形物含量的在线无损检测。  相似文献   
3.
柑桔叶片可溶性糖近红外检测非线性模型研究   总被引:1,自引:0,他引:1  
为了监督柑桔叶片是否缺乏营养元素,对叶片可溶性糖进行分析。采用近红外光谱技术结合误差反馈神经网络(BPNN)和最小二乘支持向量机(LS-SVM)建立定量剖析非线性模型,运用主成分分析(PCA)进行数据压缩、无信息变量消除算法(UVE)和连续投影算法(SPA)进行有效波段筛选的方法来优化模型的输入变量,提高了模型检测精度。同时,利用Savitzke-Golay平滑(S-G)、多元散色校正(MSC)、导数和基线校正(Baseline)等预处理方法进行数据变换,来确定最佳建模方法。结果表明:波长筛选能优化模型,并提高运算速度,其中PCA优化效果最为明显,可溶性糖的相关系数Rp达到最大为0.91,均方根误差RMSEP最小为4.82,显著提高了模型的检测精度和稳健性,经过优化的输入变量所建模型,能够满足定量检测的要求,具有一定的可行性。  相似文献   
4.
柑桔黄龙病近红外光谱无损检测   总被引:3,自引:1,他引:2  
为探讨快速无损检测柑桔黄龙病的可行性,应用近红外光谱技术结合机器学习方法进行研究。在4000~9000cm-1光谱范围内,采集黄龙病、缺素和健康3类叶片样本的近红外光谱。采用一阶导数、平滑和多元散色校正组合的光谱预处理方法,消除光谱的基线漂移和散射效应。分别对偏最小二乘判别模型(PLS-DA)的主成分因子数和最小二乘支持向量机(LS-SVM)的输入变量数量、核函数类型及其参数进行了优化,建立了PLS-DA和LS-SVM模型。采用预测集样本,评价模型的预测能力,经比较,采用11个主成分得分向量为输入、线性核函数和惩罚因子为2.25的LS-SVM模型预测效果最佳,模型误判率为0。结果表明采用近红外光谱技术结合最小二乘支持向量机进行柑桔黄龙病无损检测是可行的。  相似文献   
5.
柑橘病害严重影响柑橘产量与品质,为进一步寻找叶片光谱与其理化指标变化规律,故将近红外光谱技术与化学计量学相结合探索柑橘病害光谱判别及病害对理化指标影响的可行性。利用便携式近红外光谱仪,获取柑橘正常、溃疡病和砂皮病3类叶片光谱并测量理化指标值,开展光谱特性与理化指标规律分析,进行SPA(successive projections algorithm)与PCA(principal component analysis)变量筛选,结合RF (random forest)与LWPLS(locally weighted partial least squares)分别建立柑橘病害定性模型及理化指标定量模型。对比分析模型结果,发现基于原始光谱变量的LWPLS定性模型效果最佳,其判别准确率为94.03%。用401个光谱变量为输入,基于LWPLS的正常叶片SPAD值模型分析结果最优;虽正常、溃疡病和砂皮病3类叶片综合的LWPLS定量模型RMSEP较大为4.46%,但模型对叶片SPAD值具有较好的预测精度,R2和RPD分别为0.93、2.19。研究表明,近红外光谱技术结合化学计量学判别柑橘病害及分析病害对叶片理化指标的影响具有一定可行性,可为柑橘病害实时现场检测提供重要科学参考。  相似文献   
6.
基于高光谱成像的柑橘黄龙病无损检测   总被引:4,自引:0,他引:4  
采用高光谱成像技术,结合最小二乘支持向量机(LS-SVM)和偏最小二乘判别分析(PLS-DA)2种方法,探索柑橘黄龙病快速无损检测的可行性。在380~1 080 nm光谱范围内,采集正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种柑橘叶片的高光谱图像。采用方差分析方法,分析了正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种叶片的叶绿素、淀粉和可溶性糖含量间的差异,表明3指标可作为判别黄龙病的指示性指标。采用偏最小二乘法,建立了叶绿素、可溶性糖及淀粉3指标含量的定量分析数学模型,模型预测均方根误差分别为7.46、5.51、5.88,提供了柑橘黄龙病高光谱成像快速检测依据。提取高光谱图像感兴趣区域的平均光谱,通过分析正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种叶片的代表性光谱,在750 nm处吸光度存在差异。采用2阶导数处理样品光谱,消除了450~650 nm和800~1 000 nm波段的基线漂移,放大了有效光谱信息。采用主成分分析(PCA)和连续投影算法(SPA)筛选柑橘黄龙病LS-SVM定性判别模型的输入变量,建立了LS-SVM定性判别模型,同时与PLS-DA进行对比。采用未参与建模的预测集样品评价模型性能,结果表明PLS-DA模型判别柑橘黄龙病的准确率更高,模型误判率为5.6%。实验结果表明,高光谱成像技术结合偏最小二乘判别分析方法可实现柑橘黄龙病快速无损检测与黄龙病病情等级判别。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号