首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
基础科学   2篇
  1篇
  2024年   2篇
  2023年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
针对当前运用单一光学卫星反演土壤含水率时易受到云的影响,单一SAR卫星反演土壤含水率时易受到地表粗糙度和植被影响的问题,以内蒙古河套灌区沙壕渠为研究区域,以4个深度的土壤含水率为研究对象,分别采用主成分分析(PCA)、施密特正交变换(GS)融合Landsat8和Sentinel-1图像以减少云、植被、土壤粗糙度的影响,并对融合后的图像质量进行评价,然后用融合图像的灰度构建1 134种遥感指数,基于相关系数分析、变量投影重要性分析、灰色关联分析3种变量筛选方法与BP神经网络(BP)、极限学习机(ELM)、随机森林(RF)、支持向量机(SVM)4种机器学习算法的耦合模型反演沙壕渠土壤含水率。研究结果表明:经PCA、GS融合后的融合图像可同时保持Sentinel-1和Landsat8图像的优势,并成功定量反演土壤含水率。基于融合图像构建的三维指数普遍比二维指数对土壤含水率更敏感。在表层土壤含水率反演中,基于GS融合的VIP-ELM模型精度最高(决定系数R2=0.66,均方根误差(RMSE)为1.35%)。将GS融合的VIP-ELM模型应用于其他土壤深度含水率的反演后发现...  相似文献   
2.
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R2v/R2c为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。  相似文献   
3.
土壤含水量(soil water content, SWC)和土壤含盐量(soil salt content, SSC)是影响作物生长和农业生产力的重要因素。光学卫星图像已成为SWC和SSC估计的主要数据源。然而,在SWC或SSC变化较大地区,土壤水分和盐分会影响对方对光谱反射率的响应,使得SSC和SWC的反演精度较差。对此,该研究提出了一个半解析性的反射率模型—RVS模型,来模拟植被光谱反射率(Rv)对作物根区土壤含水量和含盐量的响应;并通过构建的RVS模型,对植被覆盖区域的土壤含水量和土壤含盐量进行同步监测。研究表明:RVS模型在反演研究区土壤含盐量和含水量时,精度较为可靠(水分:决定系数R2为0.63~0.74,均方根误差为0.017~0.028;盐分:决定系数R2为0.68~0.75,均方根误差为0.0525~0.0617)。在作物生长过程中,植被光谱反射率对深层土壤的含水量和含盐量的响应比对浅层土壤的含水量和含盐量的响应更加明显,而且随着作物的生长,影响光谱反射率的主导因素从土壤水分慢慢转向土壤盐分和水盐相互作用。该研究在一定程度上揭示了土壤水分、盐分、水盐交互作用对作物光谱反射率的干扰过程,实现土壤水分和盐分的同步监测,对实现区域尺度上土壤含盐量和含水量的精准监测具有一定的意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号