首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
农学   1篇
基础科学   2篇
畜牧兽医   28篇
植物保护   2篇
  2020年   1篇
  2019年   3篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2002年   1篇
  2000年   1篇
  1995年   1篇
  1989年   2篇
  1983年   1篇
排序方式: 共有33条查询结果,搜索用时 62 毫秒
1.
Farmers in the Broadview Water District in central Californiahave been improving irrigation practices in response to risingirrigation water prices and reductions in water supply since1989, when incentive policies were first implemented to reducethe volume of subsurface drain water generated in theDistrict. The average salinity of water deliveries hasincreased, over time, as the District has recycled largeamounts of drainage water to achieve regional restrictions ondrainage water discharge. We review irrigation and drainageactivities in Broadview since 1986 with an emphasis on thesustainability of crop production when drainage discharge islimited. Average cotton yields in Broadview have declined inrecent years, both nominally and in comparison with averageyields reported for the large county in which Broadview islocated. Average tomato yields in Broadview have increased inrecent years, but county-wide yields have exceeded Broadviewyields with greater frequency than in the late 1980s. Theseobservations suggest that average crop yields in Broadview maybe starting to reflect the increasing salinity of soil andwater resources, which may be due in part to persistentrestrictions on drainage water discharge.  相似文献   
2.
In good environments, cow intake is sufficient for their own growth and for milk production to support their calf. In poor environments, cows lose BW or may reduce milk supply to maintain themselves. Heritability for direct genetic and maternal components of weaning weight as well as the correlations between these components might be expected to vary according to these circumstances. The purpose of this study was to estimate heritability and genetic correlations for the direct genetic and maternal components of weaning weight classified in 2 environments according to maternal BW gain and to identify whether a single heritability estimate is appropriate for the differing environments experienced by cows from year to year. Data used in this analysis was obtained from the Red Angus Association of America and consisted of 96,064 cow BW observations and 27,534 calf weaning weight observations. A dam's change in BW from one year to the next was used to classify each calf's weaning weight into 1 of 2 environmental groups, those being good or poor. Best linear unbiased estimates of the change in cow BW with age were obtained from analysis of cow BW using a repeatability model. If the phenotypic change in cow BW exceeded this average BW change, the calf's weaning weight associated with the end of this time frame was classified as having been observed in a good environment. If not, the calf's corresponding weaning weight was classified as having occurred in a poorer than average environment. Heritability estimates of 0.24 +/- 0.03, 0.24 +/- 0.03, 0.13 +/- 0.02, and 0.14 +/- 0.02 were obtained for weaning weight good direct, poor direct, good maternal, and poor maternal, respectively. Correlations between direct genetic and maternal weaning weight components in the good and poor environments were -0.47 +/- 0.08 and -0.20 +/- 0.09, respectively. These variance components are not sufficiently distinct to warrant accounting for dam nutritional environment in national cattle evaluation.  相似文献   
3.
Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222).  相似文献   
4.
Individual observations are routinely used in livestock evaluations. In some cases, pooled data representing the joint but not individual performance of a group of animals may be available. For example, pooled feed intake may be measured on a pen of livestock. The usual mixed model approach to genetic evaluation can still be applied as an exact method in this setting, provided incidence and residual variance-covariance matrices are suitably modified to account for the pooling. Approximate evaluations may be achieved by treating average performance as if it pertained to each individual in the pool. Theoretical accuracies can be obtained as a function of elements of the inverse coefficient matrix. A 3-generation data set representing 1,000 animals with feed intake observations from 49 sires and 200 maternal grand sires was simulated with heritability of 0.34. Individual records were pooled to represent circumstances in which animals with records were collectively measured. Animals were allocated into pens at random, by sire, or by maternal grand sire. Simulation was replicated with unique fixed effects for each pen. Following evaluation from each method, the empirical accuracy or product-moment correlation between true (simulated) and estimated merit could be quantified. The analysis of individual observations resulted in empirical accuracy of 0.63 for animals on test and 0.77 for their sires. Pooling the observations in pens of 2, 4, or 12 animals reduced empirical accuracies for animals on test to 0.50, 0.41, and 0.21 when pooling was at random and 0.53, 0.47, and 0.34 when pooling was by sire. Simulating a fixed pen effect representing 10% phenotypic variation, but ignoring that effect in the evaluation minimally reduced empirical accuracies to 0.52, 0.46, and 0.33 when pooling by sire. Theoretical accuracies were in close agreement with empirical accuracies when the exact method was used. The approximate method that treated averages of pooled data as if they were individually observed overstated accuracy and should not be used. Selection on the basis of pooled observations can be almost as effective as using individual observations when pool sizes are small. The exact method to account for pooled data is no more complex than conventional procedures.  相似文献   
5.
6.
7.
Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single‐nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic‐based [genomic best linear unbiased prediction (GBLUP)‐REML and BayesC] and pedigree‐based (PBLUP‐REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP‐REML across traits, from 0 to 0.03 with GBLUP‐REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic‐based methods were small (0.01–0.05), with GBLUP‐REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP‐REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population.  相似文献   
8.
Background: The frequency of recombination events varies across the genome and between individuals, which may be related to some genomic features. The objective of this study was to assess the frequency of recombination events and to identify QTL(quantitative trait loci) for recombination rate in two purebred layer chicken lines.Methods: A total of 1200 white-egg layers(WL) were genotyped with 580 K SNPs and 5108 brown-egg layers(BL)were genotyped with 42 K SNPs(single nucleotide polymorphisms). Recombination events were identified within half-sib families and both the number of recombination events and the recombination rate was calculated within each0.5 Mb window of the genome. The 10% of windows with the highest recombination rate on each chromosome were considered to be recombination hotspots. A BayesB model was used separately for each line to identify genomic regions associated with the genome-wide number of recombination event per meiosis. Regions that explained more than 0.8% of genetic variance of recombination rate were considered to harbor QTL.Results: Heritability of recombination rate was estimated at 0.17 in WL and 0.16 in BL. On average, 11.3 and 23.2 recombination events were detected per individual across the genome in 1301 and 9292 meioses in the WL and BL,respectively. The estimated recombination rates differed significantly between the lines, which could be due to differences in inbreeding levels, and haplotype structures. Dams had about 5% to 20% higher recombination rates per meiosis than sires in both lines. Recombination rate per 0.5 Mb window had a strong negative correlation with chromosome size and a strong positive correlation with GC content and with CpG island density across the genome in both lines. Different QTL for recombination rate were identified in the two lines. There were 190 and 199 non-overlapping recombination hotspots detected in WL and BL respectively, 28 of which were common to both lines.Conclusions: Differences in the recombination rates, hotspot locations, and QTL regions associated with genomewide recombination were observed between lines, indicating the breed-specific feature of detected recombination events and the control of recombination events is a complex polygenic trait.  相似文献   
9.
Porcine reproductive and respiratory syndrome (PRRS) causes decreased reproductive performance in breeding animals and increased respiratory problems in growing animals, which result in significant economic losses in the swine industry. Vaccination has generally not been effective in the prevention of PRRS, partially because of the rapid mutation rate and evolution of the virus. The objective of the current study was to discover the genetic basis of host resistance or susceptibility to the PRRS virus through a genome-wide association study using data from the PRRS Host Genetics Consortium PRRS-CAP project. Three groups of approximately 190 commercial crossbred pigs from 1 breeding company were infected with PRRS virus between 18 and 28 d of age. Blood samples and BW were collected up to 42 d post infection (DPI). Pigs were genotyped with the Illumina Porcine 60k Beadchip. Whole-genome analysis focused on viremia at each day blood was collected and BW gains from 0 to 21 DPI (WG21) or 42 DPI (WG42). Viral load (VL) was quantified as area under the curve from 0 to 21 DPI. Heritabilities for WG42 and VL were moderate at 0.30 and litter accounted for an additional 14% of phenotypic variation. Genomic regions associated with VL were found on chromosomes 4 and X and on 1, 4, 7, and 17 for WG42. The 1-Mb region identified on chromosome 4 influenced both WG and VL, exhibited strong linkage disequilibrium, and explained 15.7% of the genetic variance for VL and 11.2% for WG42. Despite a genetic correlation of -0.46 between VL and WG42, genomic EBV for this region were favorably and nearly perfectly correlated. The favorable allele for the most significant SNP in this region had a frequency of 0.16 and estimated allele substitution effects were significant (P < 0.01) for each group when the SNP was fitted as a fixed covariate in a model that included random polygenic effects with overall estimates of -4.1 units for VL (phenotypic SD = 6.9) and 2.0 kg (phenotypic SD = 3 kg) for WG42. Candidate genes in this region on SSC4 include the interferon induced guanylate-binding protein gene family. In conclusion, host response to experimental PRRS virus challenge has a strong genetic component, and a QTL on chromosome 4 explains a substantial proportion of the genetic variance in the studied population. These results could have a major impact in the swine industry by enabling marker-assisted selection to reduce the impact of PRRS but need to be validated in additional populations.  相似文献   
10.
The objective of this study was to investigate the effect of parity, age at calving, percentage North American Holstein-Friesian and calving date on subsequent calving interval and survival to facilitate the estimation of transition probabilities for month of calving. The economic value of traits that influence calving date, age distribution and survival can be assessed in models using a transition probability matrix. Such a matrix contains the probabilities that a cow of a particular age or breed calving in a particular month will calve in the same, an earlier or later month next year, or be culled. Following editing 1,046,855 calving records in spring-calving herds between the years 1990 and 2004 were analysed. Shorter calving intervals were associated with cows calving later in the calendar year. Age at first calving of < 24 months resulted in longer calving intervals to second calving across all levels of Holstein percentage with cows calving for the first time at 25–26 months of age having the shortest subsequent calving interval. Age at second calving of 37–38 months and third calving of 49–50 months were optimum for shorter subsequent calving intervals. Calving interval increased with Holstein percentage across the first 5 parities. Survival rate decreased with later month of calving and with older parities. When survival rate was measured as the ability of the cow to re-calve within 500 days, the highest survival rate was found in cows calving at 25–26 months of age whereas there was a noticeable reduction in survival across all parities in the 88–100% Holstein percent category.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号