首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   4篇
林业   1篇
基础科学   2篇
  4篇
  2024年   2篇
  2016年   1篇
  2015年   4篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
作为玉米生产加工过程的农业废弃物,玉米芯的产量巨大,生物质气化工业利用玉米芯原料制备生物质燃气的过程中将产生大量的玉米芯灰。为了全面认识这些废弃玉米芯灰的灰特性及可能的应用,通过激光粒度分析、X射线荧光(X-ray fluorescence,XRF)、X射线衍射(X-ray diffraction,XRD)、热重和差热分析(thermal gravimetric and differential thermal analysis,TG-DTA)、扫描电镜(scanning electron microscopy,SEM)、能谱分析(energy dispersive X-ray,EDX)等方法对其进行深入研究。结果表明:玉米芯灰的粒度较小且分布不均,平均粒径为12.96μm;灰的元素组成中K和Si所占的比重最大;富含K、Ca、S和Cl等元素使玉米芯灰可用作土壤改良剂,而且灰中大量的Si O2和Al2O3使其可以用来制备抗压强度较高的水泥混凝土;灰中存在多种含钾元素的KHCO3、KAl Si O4、KAl Si2O6、KCl和K2SO4等结晶相矿物成分;灰粒的形状极不规则,树枝状的团聚灰渣具有丰富的空隙,易逐级吸附小颗粒,灰粒表面存在大量弱粘结的絮状物,断面多为孔状结构;熔融灰粒表面存在富钾现象,且多以KCl形式存在;飞灰的热解具有分段机制,加热到1 200℃时,其总失重和最大失重速率均随着氧气浓度的升高而增加;氮气中620℃的吸热峰是由KCl熔融吸热所致,而有氧气氛中在630℃处的放热峰则是未燃尽的残碳继续燃烧或有机物分解放热所致。  相似文献   
2.
玉米芯的热解特性及气相产物的释放规律   总被引:2,自引:4,他引:2  
为了全面掌握不同热解条件下玉米芯的热解特性及热解过程中气相产物随温度变化的释放规律,深刻理解玉米芯的热解行为及反应机理,该文采用热重-质谱联用技术对玉米芯进行了氮气气氛下的热解特性试验研究,对比研究了不同升温速率(5、10、20℃/min)、不同粒度(74、154、280、450μm)、不同气体流速(30、60、90 m L/min)等因素对玉米芯热解行为的影响,发现非等温失重过程可分为4个阶段:失水、预热解过渡、挥发分析出和炭化阶段。通过质谱分析研究了热解过程小分子气相产物(CO、CO2、CH4、O2、H2、H2O)的释放规律,并计算了挥发分释放指数。升温速率升高,热解反应越易进行;在粒度小于450μm范围内,试样热解的总失重率随粒度的增大而增加,而且颗粒越大,挥发分产物开始逸出的温度越低。粒度为154~450μm的试样的热解过程主要受颗粒内部热传递影响,而粒度154μm的试样的热解主要受内在反应动力学速率控制;随着气体流速升高,试样热解的总失重率和初始温度增大,但增幅很小,最大失重速率对应的温度也有向高温段移动的趋势。利用Coats-Redfern方法计算出玉米芯的热解动力学参数,说明玉米芯热解的挥发分析出阶段可用单段一级反应描述。该研究对于优化以玉米芯为原料的热化学转化工艺参数和提高燃料产物的产量与品质等具有重要意义,对于设计和开发高效的生物质能转化设备也可提供参考。  相似文献   
3.
为了探究秸秆类生物质在热解和气化过程中的产气规律,以我国东北地区典型的玉米秸秆为原料,基于自行建立的管式炉生物质热解气化实验装置,系统研究了玉米秸秆在氮气气氛下热解和在含氧气氛下气化过程中CO、H2、CO2、CH4和CnHm等小分子生物质燃气成分的释放特性,对比分析了不同热解温度和气化温度对不同燃气组分释放规律及其产率的影响。实验结果表明:玉米秸秆热解过程中最先释放的小分子气相产物是CO和CO2;当温度升高时生物质燃气中逐渐出现CH4和H2,且随着热解温度升高,CO的产率峰值最先出现且峰值出现在升温阶段,而CO2、CH4和H2的产率峰值几乎同时出现在恒温阶段;热解温度升高,玉米秸秆热解产生的CO体积分数几乎没有变化,而CO2的占比则随着温度的升高而降低;在400~500℃之间CH4体积分数随着热解温度的升高而增加,在500℃以后,基本稳定在13%。在O.2体积分数为8%、N2体积分数为92%的含氧气氛下,随着气化温度的升高,玉米秸秆气化产生CO2气体的体积分数呈先增加后降低的趋势,而CO的体积分数随着温度的升高而增大,这说明高温气化条件下更有利于CO的释放,而低温条件下有利于CO2的产生。  相似文献   
4.
应用热重-差热分析法研究了空气和氮气气氛中2种灰化温度(600和815℃)下制得的稻壳和稻秆等生物质灰的灼烧失重特性。结果表明:不同飞灰在空气中灼烧的质量损失均可分为剩余水分的蒸发、有机成分的快速热裂解以及无机成分的缓慢挥发等阶段,而氮气中飞灰的质量损失并未出现明显的分段热解规律;空气中600℃生物质灰的主要质量损失发生在300~550℃之间,而815℃稻壳灰的主要质量损失区间为200~600℃,815℃稻秆灰在300~550℃之间的质量损失只有1.76%;灰化温度升高,飞灰的总质量损失明显降低。空气中不同灰化温度下的稻壳灰在950~1 050℃之间都出现放热峰,但该温度区间并无明显质量损失;815℃的稻秆灰在750℃附近则存在由于KCl熔融吸热引起的吸热峰,而600℃稻秆灰的热解过程则未出现明显的吸热峰;氮气中生物质灰的热解存在2个分隔明显的质量损失速率峰,这是由2种质量损失机制单独作用而成:600~800℃之间的质量损失主要是由不稳定的碳酸盐(Ca CO3、Ma CO3等)受热分解造成,而在800~1 200℃之间的质量损失则主要是由灰中活泼的碱金属氯化物(KCl、Na Cl等)受热进入气相所致;相同灰化温度下的稻壳灰或稻秆灰在空气中热解的总质量损失明显高于氮气。  相似文献   
5.
应用扫描电镜(scanning electron microscopy,SEM)和能谱(energy disperse X-ray microanalysis,EDX)结合联用技术对稻壳和稻秆在600和815℃下灼烧产生的灰渣的微观形态特征及其元素组成进行了全面地研究,并考察了不同灰化温度对生物质灰的粒度分布、微观形态、颗粒表面、内部结构及元素组成等方面产生的影响。结果表明:灰化温度升高,灰粒的粒度减小,且分布较均匀,稻壳灰中多为团状颗粒,而稻秆灰以棒状颗粒居多;对于600℃稻壳灰,部分灰粒仍保留着稻壳的原始纤维结构,且灰中存在许多松散状的密实小颗粒,但并未出现粘结团聚,而600℃稻秆灰表面存在大量粘连着小颗粒的絮状物,表明此时灰中已经出现低熔点成分熔融而产生的弱粘结;815℃时2种生物质灰粒表面都出现熔融态的碱金属物质和以玻璃体突起形式存在的石英结构,而且都存在明显的团聚结渣现象;稻壳灰与稻秆灰的主要组成元素是C、O、Si、K和Ca,较少的Mg、Al、Fe、P等也被检出,而S只在稻秆灰中检出,稻壳灰中未检出S元素;灰化温度升高,稻壳灰的K含量明显下降,而稻秆灰中K、Na、Ca的含量变化较小,但是Cl、Fe、Al的含量均明显下降;稻秆灰的K、Na、Ca和Cl含量都远高于稻壳灰,稻秆灰比稻壳灰更易造成设备腐蚀、结渣等危害。  相似文献   
6.
利用激光粒度、X射线荧光、扫描电镜、热重和差热分析等手段对花生壳和玉米芯在600℃和815℃下成灰灰样的粒度分布、化学组成、微观形态、热重行为以及沾污结渣特性进行了全面试验研究。试验结果表明:灰化温度对灰特性影响显著,对沾污结渣影响较小;灰化温度升高,粒度减小,总失重降低,K、Na和Cl的含量降低,而Si、Ca含量未见明显变化;600℃花生壳灰仍保持原始骨架,而815℃灰的破碎程度较高,且有Si O2晶体析出;600℃玉米芯灰发生熔融,而815℃灰存在严重结渣;600℃灰的主要失重发生在300~600℃,并且差热曲线呈现剧烈的放热峰,表明灰的软化或熔融伴随放热;815℃玉米芯灰在600~800℃之间的失重则是由活泼碱金属氯化物挥发以及碳酸盐高温分解造成。  相似文献   
7.
通过马弗炉灼烧实验考察了成灰温度对杨木灰表观形貌的影响,采用X射线衍射、扫描电镜、能谱分析等方法对比分析了不同成灰温度(600、 800、 1 000℃)下制得的杨木灰的理化特性;采用灰熔点测试仪测试了杨木灰的熔融特征温度,揭示了杨木灰熔融特征温度与成灰温度和停留时间的关系。将成灰温度800℃、停留时间2 h的杨木灰处理至变形温度(DT)状态,分析熔融过程中杨木灰的理化特性,进一步研究杨木灰的熔融性能。结果表明:在停留时间为2 h的条件下,成灰温度为600℃时,杨木灰的主要矿物晶相为K2SO4、KCl、SiO2、K2Ca2(SO4)3、Na2Si2O5等;成灰温度为800℃时,杨木灰的主要矿物晶相为MgSiO3、Na2Si2O5、Na6Mg(SO4  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号