首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2014年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.

Purpose

Many environmental investigations (empirical and modelling) and theories are based on reliable information on the depth distribution of physical, chemical and biological properties in soils and sediments. However, such depth profiles are not easy to determine using current approaches, and, consequently, new devices are needed that are able to sample soils and sediments at fine resolutions.

Materials and methods

We have designed an economic, portable, hand-operated surface soil/sediment sampler—the Fine Increment Soil Collector (FISC)—which allows for the close control of incremental soil/sediment sampling and for easy recovery of the material collected by a simple screw-thread extraction system. This innovative sampling system was developed originally for the beryllium-7 (7Be) approach in soil and sediment redistribution research. To ensure reliable estimates of soil erosion and sediment deposition from 7Be measurements, the depth distribution of this short-lived fallout radionuclide in soil/sediment at the resolution of millimetres is a crucial requirement. This major challenge of the 7Be approach can be met by using the FISC.

Results and discussion

We demonstrate the usefulness of the FISC by characterising the depth distribution of 7Be at increments of 2.5 mm for a soil reference site in Austria. The activity concentration of 7Be at the uppermost increment (0–2.5 mm) was ca. 14 Bq kg?1 and displayed decreasing activity with depth. Using most conventional sampling devices (i.e. the scraper-plate system), the most accurate depth increment would have been 10 mm, and the activity concentration at the surface would have been considerably lower. Consequently, coarser sampling would have influenced estimates of 7Be-derived soil erosion and deposition. The potential application for other soil/sediment properties, such as nutrients (e.g. phosphorus), contaminants and carbon are also discussed.

Conclusions

By enabling soil and sediment profiles to be sampled at a depth resolution of millimetres, the FISC has the potential to provide key information when addressing several environmental and geoscientific issues, such as the precise depth distributions of soil/sediment nutrients, contaminants and biological properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号