首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2000年   1篇
  1997年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Glycerol-plasticized soy protein films were cast from alkaline aqueous film-forming solutions of laboratory-prepared 7S, 11S, and soy isolate (LSI) fractions and from commercial soy isolate (CSI). Tensile strength (TS), elongation at break (E), water vapor permeability (WVP), total soluble matter (TSM), protein solubility (PS), and Hunter L, a, and b color values of these films were determined. The 11S films had greater TS than 7S films (P < 0.05), while LSI films had greater TS than CSI films (P < 0.05). No significant differences were detected among mean E values and among mean WVP values of all films (P > 0.05). The 7S films had higher TSM and PS values than 11S films (P < 0.05). CSI films were significantly darker (lower L value) and more yellow (greater positive b value) than LSI films (P < 0.05).  相似文献   
2.
Protein solubility (PS) values of different soy protein isolate (SPI) films were determined in water, 0.01 N HCl, 0.01 N NaOH, 4 M urea, and 0.2 M 2-mercaptoethanol. Tensile and color (L, a, and b values) properties of films also were determined. Control films were cast from heated (70 degrees C for 20 min), alkaline (pH 10) aqueous solutions of SPI (5 g/100 mL of water) and glycerin (50% w/w of SPI). Additional films were cast after incorporation of dialdehyde starch (DAS) at 10% w/w of SPI or small amounts of formaldehyde in the film-forming solutions. Also, control film samples were subjected to heat curing (90 degrees C for 24 h), UV radiation (51.8 J/m(2)), or adsorption of formaldehyde vapors. PS of control films was highest (P < 0.05) in 2-mercaptoethanol, confirming the importance of disulfide bonds in SPI film formation. All treatments were effective in reducing (P < 0.05) film PS in all solvents. Both DAS and adsorbed formaldehyde rendered the protein in films practically insoluble in all solvents. Adsorption of formaldehyde vapors and heat curing also substantially increased (P < 0.05) film tensile strength from 8.2 to 15.8 or 14.7 MPa, respectively. However, heat curing decreased (P < 0.05) film elongation at break from 30 to 6%. Most treatments had small but significant (P < 0.05) effects on b color values, with DAS-containing films having the greatest (P < 0. 05) mean b value (most yellowish). Also, DAS-containing, heat-cured, and UV-irradiated films were darker, as evidenced by their lower (P < 0.05) L values, than control films. It was demonstrated that PS of SPI films can be notably modified through chemical or physical treatments prior to or after casting.  相似文献   
3.
Degermed corn meal adjusted to 18% moisture content (db) with epichlorohydrin (ECH) content at 0, 0.5, 1, or 2% (w/w) were extruded with a twin-screw laboratory extruder at a screw speed of 140 rpm. Compression and metering barrel zones were set at 100, 120, or 140°C. Water solubility (WS) of ground extrudates ranged from 7.6 ± 1.1% to 14.3 ± 1.3%. ECH content had a significant (P < 0.01) negative effect on WS, while barrel temperature and the interaction between barrel temperature and ECH content were not significant (P > 0.05). Presumably, ECH reduced WS of extrudates through cross-linking between hydroxyl groups on starch and protein molecules. Gel-permeation chromatography patterns for both 100 and 140°C barrel temperatures showed that high molecular weight carbohydrates in the extrudates decreased with increasing ECH content without a simultaneous increase in low molecular weight carbohydrates. This suggested that the decrease in high molecular weight fractions was due to insolubilization by cross-linking rather than degradation. SDS-PAGE revealed that two protein bands of ≈29 and 17.5 kDa disappeared, and a new band appeared at 45 kDa with increasing ECH content. This indicated that, most likely, ECH reacted with protein in addition to reacting with starch. However, glycoprotein and starch-protein complexes were not identified with electrophoresis.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号