首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2022年   1篇
  2014年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Journal of Soils and Sediments - Soil erosion by water yields sediment to surface reservoirs, reducing their storage capacities, changing their geometry, and degrading water quality. Sediment...  相似文献   
2.

Purpose

Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as “fingerprints” to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (>60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events.

Materials and methods

Sediment samples from the following three different origins were collected in the Isábena catchment (445 km2) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions.

Results and discussion

We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location—and thus the effect of individual tributaries or subcatchments—seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (<10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed.

Conclusions

Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.  相似文献   
3.

Purpose

Many Mediterranean drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity describes the ease with which sediment can move through a catchment. The spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main factors driving sediment connectivity. This is particularly true for the patchy vegetation cover typical of many dryland environments. Several connectivity measures have been developed in the last few years. At the same time, advances in remote sensing have enabled an improved catchment-wide estimation of ground cover at the subpixel level using hyperspectral imagery.

Materials and methods

The objective of this study was to assess the sediment connectivity for two adjacent subcatchments (~70 km2) of the Isábena River in the Spanish Pyrenees in contrasting seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were derived by applying a multiple endmember spectral mixture analysis approach to the hyperspectral image data. Sediment connectivity was mapped using the index of connectivity, in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation (RUSLE) was used as a weighting factor. Bi-temporal C factor maps were derived by linking the spatially explicit fractional ground cover and vegetation height obtained from the airborne data to the variables of the RUSLE subfactors.

Results and discussion

The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover and on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in August as compared to April. The two subcatchments show a slightly different connectivity behaviour that reflects the different land cover proportions and their spatial configuration.

Conclusions

The connectivity estimation can support a better understanding of processes controlling the redistribution of water and sediments from the hillslopes to the channel network at a scale appropriate for land management. It allows hot spot areas of erosion to be identified and the effects of erosion control measures, as well as different land management scenarios, to be studied.  相似文献   
4.

Purpose

Knowledge of the origin of suspended sediment is important for improving our understanding of sediment dynamics and thereupon support of sustainable watershed management. An direct approach to trace the origin of sediments is the fingerprinting technique. It is based on the assumption that potential sediment sources can be discriminated and that the contribution of these sources to the sediment can be determined on the basis of distinctive characteristics (fingerprints). Recent studies indicate that visible–near-infrared (VNIR) and shortwave-infrared (SWIR) reflectance characteristics of soil may be a rapid, inexpensive alternative to traditional fingerprint properties (e.g. geochemistry or mineral magnetism).

Materials and methods

To further explore the applicability of VNIR-SWIR spectral data for sediment tracing purposes, source samples were collected in the Isábena watershed, a 445 km2 dryland catchment in the central Spanish Pyrenees. Grab samples of the upper soil layer were collected from the main potential sediment source types along with in situ reflectance spectra. Samples were dried and sieved, and artificial mixtures of known proportions were produced for algorithm validation. Then, spectral readings of potential source and artificial mixture samples were taken in the laboratory. Colour coefficients and physically based parameters were calculated from in situ and laboratory-measured spectra. All parameters passing a number of prerequisite tests were subsequently applied in discriminant function analysis for source discrimination and mixing model analyses for source contribution assessment.

Results and discussion

The three source types (i.e. badlands, forest/grassland and an aggregation of other sources, including agricultural land, shrubland, unpaved roads and open slopes) could be reliably identified based on spectral parameters. Laboratory-measured spectral fingerprints permitted the quantification of source contribution to artificial mixtures, and introduction of source heterogeneity into the mixing model decreased accuracies for some source types. Aggregation of source types that could not be discriminated did not improve mixing model results. Despite providing similar discrimination accuracies as laboratory source parameters, in situ derived source information was found to be insufficient for contribution modelling.

Conclusions

The laboratory mixture experiment provides valuable insights into the capabilities and limitations of spectral fingerprint properties. From this study, we conclude that combinations of spectral properties can be used for mixing model analyses of a restricted number of source groups, whereas more straightforward in situ measured source parameters do not seem suitable. However, modelling results based on laboratory parameters also need to be interpreted with care and should not rely on the estimates of mean values only but should consider uncertainty intervals as well.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号