首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2011年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The olive tree had been domesticated during the early Neolithic in the Near East, and more than 1000 different cultivars have been identified to date. However, examples of wild olive trees (Olea europaea oleaster) can still be found in the Mediterranean basin. Evidence of oleaster use for oil production can be found in historical and sacred texts, such as the Odyssey, the Holey Koran, and the Holey Bible. While the nutritional and healthful properties of olive oil are actively being explored, there are no data on the human actions of oleaster oil. Therefore, we investigated the effect of prolonged, i.e., 1 month, consumption of oleaster oil on the lipid profile of a 40 healthy Algerian subjects (aged 27.9 ± 3.85 years), as compared to nonconsumers from the same area. Plasma urea, creatinine, and uric acid concentrations and glycemia did not significantly differ, at the end of the study, between controls and oleaster-oil-supplemented subjects. Conversely, we recorded significant decreases of plasma triglyceride concentration (-24.8%; p < 0.05), total cholesterol (-12.13%; p < 0.05), and low-density lipoprotein-cholesterol (LDL-C) (-24.39%; p < 0.05) in oleaster-oil-treated subjects. Concomitantly, high-density lipoprotein-cholesterol (HDL-C) concentrations were significantly increased (17.94%; p < 0.05) by oleaster oil administration. In conclusion, we show that oil obtained from feral olive trees, i.e., oleasters, improves the plasma lipid profile of healthy volunteers.  相似文献   
2.
Background, Aim and Scope  The identification of certain minerals directly in the raw sediment has proved to be difficult, if not impossible, because of their instability and/or low contents. This explains why the characterization/composition/crystalline nature of multiple (co)precipitates and solid solutions often necessitate the combined use of density separation methods and macro and microanalytical techniques, and in some cases the possible existence of certain mineral solids is only sustained from thermodynamic considerations. In this context, the comparison of porewater concentration profiles with thermodynamic calculations recently proved to be a convenient way of obtaining clues relative to the potential occurrence of natural minerals. Methods  Porewaters and sedimentary-solid phases were extracted from sliced sediment samples collected in the Seine estuary (northern France), and studied as a function of sediment depth. Porewater concentration profiles were determined for Ca, Fe, Mg, Mn, Na, P and Sr using inductively coupled plasma atomic emission spectroscopy, and for dissolved sulfur using square wave, cathodic stripping voltammetry. To obtain information about sediment mineralogy, sedimentary solid phases were analysed directly and after density separation with a heavy liquid (CHBr3) by means of several techniques: X-ray diffraction; electron spin resonance and micro-Raman spectroscopies. Furthermore, using sequential extraction procedures, the chemical speciation versus depth of several elements (Al, Ca, Fe, Mg, Mn, P, Pb, Sr, Ti, and Zn) and particularly sulfur [i.e. acid volatile sulfides (AVS) and chromium reducible sulfurs (CRS)] were undertaken. Results and Discussion.  From these analytical data, some thermodynamic calculations [using ion activity products (LAP)] were attempted for the anoxic porewaters where most of the ionic complexing species were measured to support the involvement of relevant geochemical equilibria between these ions and some metals and the existence of any discrete solid phases (calcite, dolomite, greigite and probably vivianite, apatite and siderite), as well as coprecipitates and solid solutions in calcium carbonate. Conclusions  Thermodynamic equilibria in sedimentary media are rarely achieved because many chemical processes in these systems are established in long periods. Nevertheless, these calculations remain useful to increase our insight into the considered system. They help to support our view about the possible existence of certain minerals (iron sulfides, calcite, dolomite...). They also help account for the real power of ESR for indicating the presence of hypothesised solid solutions, MnxCa1-xC03. The critical investigations of the authors, however, reveal some weaknesses of XRD and Raman microscopy for identifying minor minerals/precipitates, which result from combinations between the inorganic anions P04 3-, C03 2- and S2- and the metallic cations Fe2+, Mn2+, Mg2+, and Sr2+.  相似文献   
3.
Heavy metal pollution in sediments derived from the Deûle canal and sampled at different sites not far from a smelting plant has been examined in the present work in order to identify the sources of these metals and to assess the sediment environmental quality. The total concentrations of lead, zinc, cadmium, thallium, indium and tin in the samples were determined using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Our investigations have revealed that metal pollution is readily apparent in the studied sediments, with metals contents largely exceeding those measured in the background soils: maximum values are obtained for sediments collected near the industrial zone. The chemical forms of Pb, Zn, Cd, Tl, In and Sn in these sediments have also been studied using a sequential extraction method in order to evaluate their possible mobility, bioavailability and toxicity in this aquatic environment. Overall, the averaged fractionation of Pb and Zn is dominated, in a decreasing order, by the easily reducible, oxidizable and carbonate fractions. The importance of oxidizable phase (which is assumed to be composed mainly of organic matter and sulphides) in the Pb and Zn fractionations has been confirmed by the detection of X-ray diffraction peaks ascribed to galena (PbS) and wurtzite (ZnS) in contaminated sediment samples. Anthropogenic Tl, In, and Cd are mainly retained in Fe–Mn oxides/hydroxides, whereas anthropogenic Sn predominates in aluminosilicates/clays. We suspect that elevated percentage levels of Pb, Zn, Cd and In in the reducible fraction constitute a particular potential risk to this aquatic environment in case early diagenetic phenomena (that are observed in the sedimentary material) and physical disturbances (that occur in the water column) both take place strongly in the medium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号