首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  7篇
园艺   1篇
  2020年   1篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.

Context

The role of agricultural landscapes in biodiversity conservation is an emerging topic in a world experiencing a worrying decrease of species richness. Farm systems may either decrease or increase biological diversity, depending on land-use intensities and management.

Objectives

We present an intermediate disturbance-complexity model (IDC) of cultural landscapes aimed at assessing how different levels of anthropogenic disturbance on ecosystems affect the capacity to host biodiversity depending on the land matrix heterogeneity. It is applied to the Mallorca Island, amidst the Mediterranean biodiversity hotspot.

Methods

The model uses the disturbance exerted when farmers alter the Net Primary Production through land-use change as well as when they remove a share of it (HANPP), together with Shannon–Wiener index (H′) of land-cover diversity. The model is tested with a twofold-scalar experimental design (1:50,000 and 1:5000) of a set of landscape units along three time points (1956, 1989, 2011). Species richness of breeding and wintering birds, taken as a biodiversity proxy, is used in an exploratory factor analysis.

Results

The results clearly show that when intermediate levels of HANPP are performed within intermediate levels of complexity (H′) in landscape patterns, like agro-forest mosaics, great bird species richness and high socio-ecological resilience can be maintained. Yet, these complex-heterogeneous landscapes are currently vanishing due to industrial farm intensification, rural abandonment and urban sprawl.

Conclusions

The results make apparent the usefulness of transferring the concept of intermediate disturbance-complexity interplay to cultural landscapes. Our spatial-explicit IDC model can be used as a tool for strategic environmental assessment of land-use planning.
  相似文献   
2.

Background, aim, and scope  

Nonylphenol polyethoxylates (NPEOs) are a widely used class of nonionic surfactants known to be toxic and endocrine-disrupting contaminants. Their use and production have been banned in the European Union and substituted by other surfactants considered as environmentally safer. However, their use continues in many countries without any legal control. Discharges of effluents from wastewater treatment plants and the application of sewage sludge application, landfilling, and accidental spillage to soils are the major sources of NPEOs in the environment. The biodegradation of these surfactants is relatively easy, leading to the accumulation of the simplest chemical forms of nonylphenol ethoxylates (NP, NP1EO, and NP2EO) and nonylphenol carboxy acids (NP2EC or NP1EC). However, these are also the most toxic end-products and have a higher environmental persistence. Compared to aquatic ecosystems, not much is known about the effects of NPEOs in terrestrial organisms, with few studies mainly centered on the effects on plants and soil microorganisms. The main aim of this study is to provide the range of concentrations of NPEOs with ecotoxicological effects on different plants and soil invertebrate species. In addition, we aim to identify the main soil properties influencing their toxicity.  相似文献   
3.

Purpose

Soil properties are the main explanation to the different toxicities obtained in different soils due to their influence on chemical bioavailability and the test species performance itself. However, most prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects on test species performance are usually neglected. In our study, we develop prediction models for the toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil properties.

Materials and methods

The effects on the avoidance behaviour and on reproduction of the herbicide phenmedipham to the collembolan Folsomia candida is assessed in 12 natural soils and the Organisation for Economic Co-operation and Development (OECD) artificial soil. The toxicity outcomes in different soils are compared and explanatory models are constructed by generalised linear models (GLMs) using phenmedipham concentrations and soil properties.

Results and discussion

At identical phenmedipham concentrations, the effects on reproduction and the avoidance response observed in OECD soil were similar to those observed in natural soils, while effects on survival were clearly lower in this soil. The organic matter and silt content explained differences in the avoidance behaviour in different soils; for reproduction, there was a more complex pattern involving several soil properties.

Conclusions

Our results highlight the need for approaches taking into account all the soil properties as a whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any particular soil.  相似文献   
4.
Journal of Soils and Sediments - Nonylphenol polyethoxylates (NPEOs) are a group of surfactants known to be toxic and able to mimic estrogen compounds and thus interfere with the action of an...  相似文献   
5.
Purpose

The environmental benefits of biochar application, ranging from improvements in crop yield to global change mitigation, have been extensively studied in the last decade. However, such benefits have not been profusely demonstrated under a Mediterranean climate and still less in combination with high pH soils. In our study, the short to medium effects of biochar application on a soil-plant system under Mediterranean conditions in an alkaline soil were assessed.

Material and methods

Barley plants were grown in field mesocosms during three agronomical years at three biochar addition rates (0, 5, and 30 t ha?1). Related to soil, different physicochemical parameters were analyzed as well as microbial respiration, biomass, and functional diversity. In the plant domain, in vivo ecophysiology variables such as leaf transpiration rate, stomatal conductance, and photosynthesis rate were determined while photosynthetic pigment content and soluble protein concentrations were measured in the laboratory. Additionally, crop yield and nutrient composition were also analyzed. The soil-plant connection was investigated by the N content ratio in both fractions establishing the nitrogen efficiency in the system.

Results and discussion

The highest rate of biochar amendment enhanced soil moisture and electrical conductivity combined with an increase of SO42?, Cl?, Mg2+, and K+, and decrease of NO3? and HPO4?. Notable variations regarding nutrition and moisture were induced in this Mediterranean alkaline soil after biochar addition although pH remained stable. Contrastingly, there were no major effects on microbial activity, but a lower abundance of the nosZ functional gene was found. Similarly, plant parameters were unaffected regarding chemical composition and ecophysiology although biochar induced a higher efficiency in the plant nitrogen uptake without increasing crop yield.

Conclusions

Biochar addition at the highest rate (30 t ha?1) reduced soil-soluble nitrate although N uptake by the plant remained invariable, in turn coupled to no effects on crop productivity. Our study showed that, in a Mediterranean agroecosystem, a wood biochar produced by gasification was unable to increase crop yield, but enhanced soil water retention, decreased the need for N fertilization, and decreased soil-soluble nitrate concentrations, something that could help to mitigate the excessive nitrate levels associated with over-fertilization.

  相似文献   
6.
Nowadays farmers are interested in moving to organic cultivation. The purpose of this experiment was to compare two organic, with or without effective microorganisms (EM), and one conventional greenhouse pepper cropping systems. We focused on the study of the macronutrients nitrogen, phosphorus, and potassium (N, P, K) concentrations in leaves plants, soil, and soil solution during the full production cycle to detect any plant nutrient deficiencies and differences in crop yield for the three different treatments. Foliar analyses showed good concentrations of nutrients with conventional treatment, but P was low with organic ones. However, P content in soil was high, because this element is easily precipitated in carbonated soil. Pepper yield was higher in conventional treatment and no differences in productivity were found between the two organic treatments. The role of EM was not clear on the development of plants and fruits; however it seems to influence the N mineralization in organic treatments.  相似文献   
7.

Background, aim, and scope  

Mining activities disturb land and reduce its capacity to support a complete functional ecosystem. Reclamation activities in this case are not easy due to the large amount of soil required. This is why mining debris are usually used as surrogate of soil, despite their unsuitable physicochemical properties. However, these properties can be improved with the amendment using an organic source, usually sewage sludge. Nevertheless, the use of sludge might lead to impacts on soil and water ecosystems because of its physicochemical properties and pollutant content. The aim of this study is to assess the suitability of the use of mining debris amended with sewage sludge as practice for the reclamation of land degraded by limestone-quarrying activities.  相似文献   
8.

Purpose

The main objective of the present study was to evaluate the toxicity of two reference chemicals, Carbendazim and Phenmedipham, for the compostworm Eisenia andrei (effects of Carbendazim) and the potworm Enchytraeus crypticus (effects of Phenmedipham) in 12 Mediterranean soils with contrasting soil properties. The observed toxicity was also compared to that obtained for OECD standard soil, used as a control.

Materials and methods

The soils were selected to be representative for the Mediterranean region and to cover a broad range of soil properties. The evaluated endpoints were avoidance behavior and reproduction. Soils were also assembled in two groups according to their pedological properties.

Results and discussion

Toxicity benchmarks (AC50s) obtained for E. andrei avoidance behavior in carbendazim-contaminated soils were generally higher for sandy soils with low pH. The toxic effects on the reproduction of the compostworms were similar in the six tested soils, indicating a low influence of soil properties. The avoidance response of E. crypticus towards Phenmedipham was generally highly variable in all tested soils. Even though, a higher toxicity was observed for more acidic soils. The EC50s for reproduction of the latter species varied by a factor of 9 and Phenmedipham toxicity also tended to be increasing in soils with lower pH, except for the soils with extreme organic matter content (0.6 and 5.8%).

Conclusions

A soil effect on chemical toxicity was clearly confirmed, highlighting the influence that test soils can have in site-specific ecological risk assessment. Despite some relationships between soil properties and toxicity were outlined, a clear and statistically significant prediction of chemical toxicity could not be established. The range of soil properties was probably narrow to give clearer and more consistent insights on their influence. For the four groups of tests, the toxicity observed for OECD soil was either similar, lower, or generally higher if compared with Mediterranean soils. Moreover, it did represent neither the organic matter content found in Mediterranean soils nor their textural classes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号