首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
  2005年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Soil microbial immobilization and plant uptake of N were evaluated for three forest types in Kochi, Shikoku district. During 196-d laboratory incubation, soil NO3-N production in the Hinoki cypress forest was negligible for the initial 40 d and then rapidly increased, whereas NO3-N production was rapid from the beginning in Japanese cedar and deciduous hardwood forests. Microbial immobilization of the labeled 15N decreased in the order of NH4-N>glycine-N>NO3-N. The 15N immobilization was higher for soil in the Hinoki cypress forest than other two soils. The delayed NO3-N production in the Hinoki cypress forest was likely related with low availability of NH4-N due to NH4-N immobilization and substantial NO3-N immobilization. In the field experiment, 15N uptake by roots decreased in the order of NH4-N>NO3-N>glycine-N. The absorption of the labeled 13C suggested direct uptake of organic N. The preference of N forms by root uptake was not different among forest types. Trees in three forest types can absorb inorganic and organic forms of N, suggesting trees absorb the N form that is the most abundant in the soil.  相似文献   
2.
Journal of Soils and Sediments - Sediment oxygen demand (SOD) measurement currently requires a long preparation time and bulky experimental equipment, which represent major obstacles to conducting...  相似文献   
3.
Factors that affect the δ13C values of fungi need to be analyzed for the progress of isotope-based studies of food-chain or organic matter dynamics in soils. To analyze the factors that control δ13C values of the fungal body, basidiomycete and ascomycete species were grown on a beechwood substrate (six species) and in glucose medium (nine species), and the δ13C value of produced fungal body was compared to that of the carbon source. The 13C enrichment (Δδ13C) in the fungal aggregates compared to the decomposed wood varied from 1.2 to 6.3‰ among six species. In the glucose substrate experiment, the degree of 13C enrichment in the hyphal mat was relatively small and varied from −0.1 to 2.8‰ among nine basidiomycetes species depending on their growth stage. Calculated δ13C values of the respired CO2 were lower than those of the hyphal mat, organic metabolites and the glucose used. The degree of 13C enrichment was affected by fungal species, substrate and growth stage. Fungal internal metabolic processes are the plausible mechanism for the observed isotopic discrimination between fungal bodies and substrates. Especially, dark fixation of ambient CO2 and kinetic isotope fractionation during assimilation and dissimilation reactions could well explain Δδ13C dynamics in our experiments. Through the analysis of field Δδ13C, we could know undisturbed fungal status about starvation, aeration and type of decomposition.  相似文献   
4.
The 15N natural abundance in Pinus densiflora Sieb. et Zucco that had been inoculated and not inoculated with ectomycorrhizal fungi (Suillus granulatus (L.:Fr.) O. Kuntze) was compared. The inoculated pine needles showed a lower δ15N value, while the uninoculated ones showed a higher δ15N value. Higher δ15N values in the mycelial mat of the ectomycorrhizal fungi compared to those of the inoculated pine needles were also observed. These facts indicate that nitrogen isotope fractionation occurred during the nitrogen transport from mycorrhizal fungi to the host plants.  相似文献   
5.
Purpose

To explore the mechanisms in the deposition and release of phosphorus (P) in the sediment of a shallow eutrophic lake using preserved samples, we investigated the vertical and temporal changes in P, manganese (Mn), sulfur (S), iron (Fe), aluminum (Al), calcium (Ca), and magnesium (Mg) in the sediment samples and the phosphate in the sediment pore water samples over a period of 6 years.

Materials and methods

The upper 15 cm of sediment from Lake Kasumigaura in Japan was collected monthly from 2003 to 2008 from the center of the lake. Sediment cores were divided into seven depth segments and were acid-digested for an elemental analysis via inductively coupled plasma atomic emission spectroscopy. Phosphate concentrations of the sediment pore water were determined using the molybdenum blue method. A multiple regression analysis was conducted by setting the P content as the response variable and Mn, S, Fe, Al, Ca, and Mg as explanatory variables.

Results and discussion

The results of the multiple regression analysis demonstrated that P co-precipitates with Fe and Al oxides and accumulates on the sediment surface. The vertical distributions of Mn and S suggest that Mn reduction occurs within the 0–1-cm-depth layer of the sediment and that iron sulfide is actively formed in the 6–10-cm-depth layer of the sediment. These findings imply that the layer in which ferric oxides are reduced to ferrous ions is present near the 1–6-cm-depth layer of the sediment. This layer corresponds to the layer in which the maximum phosphate concentration of the sediment pore water often occurred (the 2–6-cm-depth layer). These results indicate that vertical distributions of mineral elements are useful for assessing P dynamics in sediments.

Conclusions

The lake sediments record the dynamics of P in the sediment. Our analytical approach using long-term observation data demonstrated that the accumulation and release of P associated with a change in the redox state can be assessed based on the vertical distributions of mineral elements in the lake sediments.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号