首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 385 毫秒
1
1.
Purpose

The purpose of this research was to study the generation, sink, and emission of greenhouse gases by soils on technogenic parent materials, created at different stages of the Moskva River floodplain development (1—construction and 2—landscaping of residential areas).

Materials and methods

Field surveys revealed the spatial trends of concentration and emission of the greenhouse gases in following groups of soils: Retisols (RT-ab-ct) and Fluvisols (FL-hu, FL-hi.gl) before land engineering preparation for the construction, Urbic Technosols Transportic (TC-ub-ar.tn and TC-ub-hu.tn) at stage 1 and Urbic Technosols Folic (TC-ub-fo) at stage 2. CO2 and CH4 concentration in soils and their emission were determined using subsurface soil air equilibration tubes and the closed chamber method, respectively. Bacterial methane generation rate (MGR) and methane oxidation rate (MOR) were measured by kinetic methods.

Results and discussion

In natural soils MOR is caused only by intra-aggregate methanogenesis. The imbalance of methane generation and oxidation was observed in FL-hi.gl. It caused CH4 accumulation in the profile (7.5 ppm) and its emission to the atmosphere (0.11 mg CH4 m?2 h?1). RT-ab-ct acted as the sink of atmospheric methane. CO2 emission was 265.1?±?24.0 and 151.9?±?37.2 mg CO2 m?2 h?1 from RT-ab-ct and FL-hi.gl, respectively. In Technosols CH4 concentration was predominantly low (median was 2.7, 2.9, and 3.0 ppm, in TC-ub-ar.tn, TC-ub-hu.tn, and TC-ub-fo, respectively), but due to the occurrence of peat sediments under technogenic material, it increased to 1–2%. Methane emission was not observed due to functioning of biogeochemical barriers with high MOR. In TC-ub-ar.tn and TC-ub-hu.tn, the barriers were formed at 60-cm depth. In TC-ub-fo, the system of barriers was formed in Folic and Technic horizons (at 10- and 60-cm depth). CO2 emission was 2 times lower from TC-ub-ar.tn and TC-ub-hu.tn and 1.5 times higher from TC-ub-fo than from natural soils.

Conclusions

Greenhouse gas generation, sink, and emission by natural soils and Technosols in floodplain were estimated. CO2 and CH4 content in Technosols varied depending on the properties of parent materials. Technosols at stage 1 did not emit CH4 due to formation of biogeochemical barriers—soil layers of high CH4 utilization rates. Urbic Technosols (Folic) at stage 2 performed as a source of significant CO2 emission.

  相似文献   
2.
Methane consumption in constructions is driven by its intense biofiltration which differs by seasons according to the general specifics of the functioning of methanotrophs. Three stages of methane biofiltration were identified—adaptation, optimum, and stress. It was established that methane biofiltration in soil construction is 1.5–2.0 times higher than in soil-like constructions. The biofiltration process under intense methane inflow leads to filtrate acidity increase; the Eh value drops in the summer period in constructions and grows during the winter season; a significant increase in microbial community stability is observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号