首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  3篇
综合类   1篇
畜牧兽医   2篇
  2020年   1篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
  2001年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
从害虫马尾松毛虫中提取甲壳素的初步研究   总被引:6,自引:1,他引:6  
采用酸碱法对马尾松毛虫蛹中甲壳素的提取方法进行了初步研究。重点分析了N aOH不同处理条件对脱有机物质和甲壳素产率的影响,确定了从马尾松毛虫蛹中提取甲壳素的基本工艺:(1)脱矿物质:盐酸浓度为2.5%,浸泡时间为20 h,浸泡温度为30℃;(2)脱有机物质:N aOH浓度为6%,浸泡温度为75℃,浸泡时间为10 h;(3)脱色:双氧水浓度为9%,浸泡时间为2.5 h,浸泡温度为80℃。在此条件下,获得的甲壳素产品为白色粉状固体,其N含量为6.87%,灰分为1.19%,水分为8.37%。产率为29.97%。产品的N含量达到食品级甲壳素标准,灰分含量达到工业级甲壳素标准。实验有助于后续深入研究马尾松毛虫蛹中甲壳素的提取,也为今后进一步制备虫蛹壳聚糖打下了基础。  相似文献   
2.
3.
Cadmium (Cd) is a well‐known toxicant targeting many organs, among them placenta. This heavy metal also has embryonary and foetal toxicity. This study was undertaken to analyse the effect of a single Cd dose administered at 4, 7, 10 or 15 days of gestation on the offspring of pregnant rats sacrificed at 20 days of gestation. Cadmium chloride was administered subcutaneously at 10 mg/kg body weight to Wistar pregnant dams; control animals received a proportionate volume of sterile normal saline by the same route. Maternal uteri, livers, kidneys and lungs, and foetuses were examined at necropsy. Samples of maternal organs and whole foetuses were collected for histopathologic examination, determination of Cd levels and staining by the Alizarin red S technique. Results revealed a clear embryotoxic and a teratogenic effect of this heavy metal, the former as a significant increase in the number of resorptions, and the latter as significant decrease of the gestational sac weight, and the size and weight of foetuses of Cd‐treated dams as well as induced malformations in skull bones, vertebrae and thoracic, and pelvian limbs. The deleterious effects found were similar to those previously reported for other animal models suggesting a high conservation of the pathogenic mechanisms of Cd. Additionally, many of the addressed aspects showed a slight dependence on the time of administration of the toxic that might be due to the accumulation of the metal in different organs, as we were able to demonstrate by the analysis of its concentration.  相似文献   
4.
In some cruciferous plants, epithiospecifier protein (ESP) directs myrosinase (EC 3.2.3.1)-catalyzed hydrolysis of alkenyl glucosinolates toward epithionitrile formation. Here, for the first time, we show that ESP activity is negatively correlated with the extent of formation of the health-promoting phytochemical sulforaphane in broccoli (Brassica oleracea L. ssp. italica). A 43 kDa protein with ESP activity and sequence homology to the ESP of Arabidopsis thaliana was cloned from the broccoli cv. Packman and expressed in Escherichia coli. In a model system, the recombinant protein not only directed myrosinase-dependent metabolism of the alkenyl glucosinolate epi-progoitrin [(2S)-2-hydroxy-3-butenyl glucosinolate] toward formation of an epithionitrile but also directed myrosinase-dependent hydrolysis of the glucosinolate glucoraphanin [4-(methylsulfinyl)butyl glucosinolate] to form sulforaphane nitrile, in place of the isothiocyanate sulforaphane. The importance of this finding is that, whereas sulforaphane has been shown to have anticarcinogenic properties, sulforaphane nitrile has not. Genetic manipulation designed to attenuate or eliminate expression of ESP in broccoli could increase the fractional conversion of glucoraphanin to sulforaphane, enhancing potential health benefits.  相似文献   
5.
Epidemiological and laboratory studies suggest that dietary broccoli may prevent or delay a variety of cancers. Broccoli and other crucifers contain a relatively unique family of secondary metabolites called glucosinolates. Glucoraphanin, the major glucosinolate in broccoli, is hydrolyzed by an endogenous plant myrosinase to form either the potent anticarcinogen sulforaphane (SF) or sulforaphane nitrile (SF nitrile). The bioactivities of SF and SF nitrile were compared in rats and in mouse hepatoma cells. Male, 4-week-old, Fischer 344 rats were administered SF or SF nitrile (200, 500, or 1000 micromol/kg) by gavage daily for 5 days. Hepatic, colonic mucosal, and pancreatic quinone reductase and glutathione S-transferase activities were induced by high doses of SF, but not by SF nitrile. When Hepa 1c1c7 cells were exposed to increasing levels of each compound for 24 h, quinone reductase showed a 3-fold maximal induction over control at 2.5 microM SF and a 3.5-fold maximal induction over control at 2000 microM SF nitrile, the highest concentration tested. These results demonstrate that SF nitrile is substantially less potent than SF as an inducing agent of phase II detoxification enzymes. Therefore, glucoraphanin hydrolysis directed toward the production of SF rather than SF nitrile could increase the potential chemoprotective effects of broccoli.  相似文献   
6.
An extraction and preparative HPLC method has been devised to simultaneously purify sulforaphane and sulforaphane nitrile from the seed of Brassica oleracea var. italica cv. Brigadier. The seed was defatted with hexane, dried, and hydrolyzed in deionized water (1:9) for 8 h. The hydrolyzed seed meal was salted and extracted with methylene chloride. The dried residue was redissolved in a 5% acetonitrile solution and washed with excess hexane to remove nonpolar contaminants. The aqueous phase was filtered through a 0.22-microm cellulose filter and separated by HPLC using a Waters Prep Nova-Pak HR C-18 reverse-phase column. Refractive index was used to detect sulforaphane nitrile, and absorbance at 254 nm was used to detect sulforaphane. Peak identification was confirmed using gas chromatography and electron-impact mass spectrometry. Each kilogram of extracted seed yielded approximately 4.8 g of sulforaphane and 3.8 g of sulforaphane nitrile. Standard curves were developed using the purified compounds to allow quantification of sulforaphane and sulforaphane nitrile in broccoli tissue using a rapid GC method. The methodology was used to compare sulforaphane and sulforaphane nitrile content of autolyzed samples of several broccoli varieties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号