首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
园艺   1篇
  2011年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Al chemistry was studied in two acidic watersheds, one with a podzol, the other with an acid brown soil, in the Vosges mountains (N.E. France), by analysing both leaching and centrifugation soil solutions and spring waters over 3 yr. In the podzol, Al was mobilized in the eluvial horizons under the predominant influence of organic acidity, then leached down the profile as organic and F-bound Al. Strong undersaturation with respect to proto-imogolite and imogolite showed that the proto-imogolite theory of podzolization could not apply. Al was transferred from the soil to spring water mostly as Al3+ and Al-F. Al3+, as well as additional minor species (AlOH2+, AlSO4 +), originated from the redissolution of the top of the spodic horizons under the influence of both soil solution acidity and the occurrence of mobile anions derived from atmospheric deposition. Conversely, in the acid brown soil, Al mobilization was regulated by nitrate and occurred mainly as Al3+. Most of Al was retained in the deep soil and only traces of monomeric Al reached spring water. In the podzol eluvial horizons, soil solutions were undersaturated with respect to all relevant mineral phases and their chemical composition agree with the concept of a mobilization of Al from the solid soil organic Al and a control of Al3+ activity by complexation reaction with the solid and soluble soil organic matter and F. In the acid brown soil, soil solutions were found to be in equilibrium with natural alunite, and the formation of this mineral, if confirmed, would account for the occurrence of 'open' vermiculites instead of the expected hydroxy-Al interlayered vermiculites. Al solubility control in surface water of both watersheds remains unclear. The Al-F species in both watersheds and the likely control of Al solubility by alunite in the acid brown soil emphasize the influence of acid deposition on Al chemistry in acid watersheds.  相似文献   
2.
Understanding how patterns of habitat selection vary in relation to landscape structure is essential to predict ecological responses of species to global change and inform management. We investigated behavioural plasticity in habitat selection of roe deer (Capreolus capreolus) in relation to variable habitat availability across a heterogeneous agricultural landscape at the home range and landscape scales. As expected, woodland was heavily selected, but we found no functional response for this habitat, i.e. no shift in habitat selection with changing habitat availability, possibly due to the presence of hedgerows which were increasingly selected as woodlands were less abundant. Hedgerows may thus function as a substitutable habitat for woodlands by providing roe deer with similar resources. We observed a functional response in the use of hedgerows, implying some degree of landscape complementation between hedgerows and open habitats, which may in part compensate for lower woodland availability. We also expected selection for woodland to be highest at the wider spatial scale, especially when this habitat was limiting. However, our results did not support this hypothesis, but rather indicated a marked influence of habitat composition, as both the availability and distribution of resources conditioned habitat selection. There was no marked between-sex difference in the pattern of habitat selection at either scale or between seasons at the landscape scale, however, within the home range, selection did differ between seasons. We conclude that landscape structure has a marked impact on roe deer habitat selection in agricultural landscapes through processes such as landscape complementation and supplementation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号