首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
林业   4篇
  5篇
  2018年   2篇
  2014年   1篇
  2012年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Drought-induced decline is affecting Pinus sylvestris populations in southern Europe, with very little impact on the more drought-tolerant Quercus pubescens. Although multiple studies have investigated interspecific differences in water use and growth strategies, the link between these two processes and how they vary within drought-exposed populations remains poorly understood. Here, we analysed tree ring and sap flow data from P. sylvestris and Q. pubescens stands in the Pyrenees in order to (1) evaluate differences in climate–growth responses among species, (2) disentangle the role of past growth trends and water use strategies in individual trees drought sensitivity and (3) assess whether such intraspecific patterns vary between species. Both species have suffered recent climatic constraints related to increased aridity. However, the effects of past growth trends and current water use traits on drought sensitivity varied among them. Initially, fast-growing ‘drought-sensitive’ pines displayed a higher gas exchange potential but were more sensitive to evaporative demand and soil moisture. They also showed lower water use efficiency for growth (WUEBAI) and current growth decline. In contrast, initially, slow-growing ‘drought-tolerant’ pines showed the opposite water use traits and currently maintain the highest growth rates. In comparison, neither current WUEBAI nor recent growth trends varied across Q. pubescens climate–growth groups. Nonetheless, ‘drought-sensitive’ oaks showed the lowest gas exchange potential and the highest growth rates under milder conditions. Our results show a strong effect of past growth trends and current water use strategies on tree resilience to increased aridity, which is more evident in P. sylvestris.  相似文献   
2.
In recent years, moving bed systems have been shown as an efficient technology in wastewater treatment and particularly in the treatment of urban effluents. This paper presents the results obtained for three different carriers in organic matter removal, analysing the influence of hydraulic retention time (HRT) and the filling ratio, as well as the kinetic constants of each carrier used. During the research, differences in the organic matter removal were observed under different conditions studied as a result of physical and geometrical characteristics of each carrier and their hydraulic behaviour. Two of the three carriers studied in this research had similar yields compared to the third carrier that presented lower rates of organic matter removal and lower kinetic constants than the other two. Carriers 1 and 2 obtained removal rates of organic matter in the form of soluble chemical oxygen demand (sCOD) above 50% for intermediate and higher filling ratios with HRTs of 15, 10 and 15 h, respectively. The maximum values obtained for carrier 1, 2 and 3 were 56.97%, 58.92% and 46.13%, respectively, under 15 h of HRT and 50% of filling ratio. The kinetic constants obtained by respirometry showed a similar trend to the values obtained from sCOD removal.  相似文献   
3.
This paper analyses the influence of activated sludge technologies on the Particle Size Distribution (PSD) of urban wastewater treatment plants operating under real conditions. The activated sludge treatment systems selected for the analysis are the most widely used in wastewater treatment installations: (a) double step activated sludge, (b) medium load activated sludge, (c) prolonged aeration, and (d) membrane bioreactors The main quality parameters (suspended solids, turbidity, and COD) and PSD in the influent and effluent of each different activated sludge treatment were analyzed during 1?year. The PSD was fitted using the power law ( $ n\left( {{d_{\text{P}}}} \right) = \frac{{\partial {\text{N}}\left( {{d_{\text{p}}}} \right)}}{{\partial {d_{\text{p}}}}} = A \cdot d_{\text{p}}^{{ - b \cdot {\text{Log}}\left( {{d_{\text{p}}}} \right)}} $ ) obtaining coefficients A and b to define the particle distribution. Mathematical correlations between this coefficients and the rest of parameters studied were found $ \left( {\matrix{ {{\text{SS}} = {0}{.0126} \cdot {A^{{{0}{.781}}}},} &{{\text{Turbidity}} = 15.5814 + 1.164 \cdot {{10}^3} \cdot A{,}} &{{\text{COD}} = \frac{{1}}{{{0}{.0133} + \cdot \frac{{{49}{.85}}}{\text{A}}}}} \\ }<!end array> } \right) $ . The relation with the average particle size by mass was also found, ( $ {d_{\text{pma}}} = - 11.6502 + \frac{{50.4265}}{b} $ ). Moreover, a relation between PSD and the particle elimination efficiency of the secondary treatment was study, ( $ \eta = 0.1434 - \frac{{0.5602}}{{{A_{\text{rel}}}}} + \frac{{0.7490}}{{{b_{\text{rel}}}}} $ ). Finally, the particulate matter nature was assessed by SEM-EDX. It can be concluded that membrane bioreactor is the technology that produces the best water quality effluent due to physic process of particle separation by ultrafiltration membrane technology.  相似文献   
4.
The physiological responses to water deficits of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) were studied under Mediterranean mountain climate. Minimum leaf water potentials were ?3.2 MPa for oak and ?2.1 MPa for pine, with higher predawn values for pubescent oak. Relative sap flow declined in both species when vapour pressure deficit (D) went above ca. 1.2 kPa, but stomatal control was stronger for pine during the 2003 summer drought. P. sylvestris plant hydraulic conductance on a half-total leaf area basis (k L,s?1) was 1.2–2.6 times higher than the values shown by Q. pubescens, and it showed a considerably steeper decrease during summer. Leaf-level gas exchange was positively related to k L,s?1 in both species. Scots pine was more vulnerable to xylem embolism and closed stomata to prevent substantial conductivity losses. The results of this study confirm that pubescent oak is more resistant to extreme drought events.  相似文献   
5.
Radial variation in sap flux density across the sapwood was assessed by the heat field deformation method in several trees of Quercus pubescens Wild., a ring-porous species. Sapwood depths were delimited by identifying the point of zero flow in radial patterns of sap flow, yielding tree sapwood areas that were 1.5-2 times larger than assumed based on visual examinations of wood cores. The patterns of sap flow varied both among trees and diurnally. Rates of sap flow were higher close to the cambium, although there was a significant contribution from the inner sapwood, which was greater (up to 60% of total flow) during the early morning and late in the day. Accordingly, the normalized difference between outer and inner sapwood flow was stable during the middle of the day, but showed a general decline in the afternoon. The distribution of sap flux density across the sapwood allowed us to derive correction coefficients for single-point heat dissipation sap flow measurements. We used daytime-averaged coefficients that depended on the particular shape of the radial profile and ranged between 0.45 and 1.28. Stand transpiration calculated using the new method of estimating sapwood areas and the radial correction coefficients was similar to (Year 2003), or about 25% higher than (Year 2004), previous uncorrected values, and was 20-30% of reference evapotranspiration. We demonstrated how inaccuracies in determining sapwood depths and mean sap flux density across the sapwood of ring-porous species could affect tree and stand transpiration estimates.  相似文献   
6.

Key message

Below-crown hydraulic resistance, a proxy for below-ground hydraulic resistance, increased during drought in Scots pine, but larger increases were not associated to drought-induced defoliation. Accounting for variable below-ground hydraulic conductance in response to drought may be needed for accurate predictions of forest water fluxes and drought responses in xeric forests.

Context

Hydraulic deterioration is an important trigger of drought-induced tree mortality. However, the role of below-ground hydraulic constraints remains largely unknown.

Aims

We investigated the association between drought-induced defoliation and seasonal dynamics of below-crown hydraulic resistance (a proxy for below-ground hydraulic resistance), associated to variations in water supply and demand in a field population of Scots pine (Pinus sylvestris L.)

Methods

Below-crown hydraulic resistance (rbc) of defoliated and non-defoliated pines was obtained from the relationship between maximum leaf-specific sap flow rates and maximum stem pressure difference estimated from xylem radius variations. The percent contribution of rbc to whole-tree hydraulic resistance (%rbc) was calculated by comparing stem water potential variations with the water potential difference between the leaves and the soil.

Results

rbc and %rbc increased with drought in both defoliated and non-defoliated pines. However, non-defoliated trees showed larger increases in rbc between spring and summer. The difference between defoliation classes is unexplained by differences in root embolism, and it is possibly related to seasonal changes in other properties of the roots and the soil-root interface.

Conclusion

Our results highlight the importance of increasing below-ground hydraulic constraints during summer drought but do not clearly link drought-induced defoliation with severe below-ground hydraulic impairment in Scots pine.
  相似文献   
7.
This article presents the results of a research study that analyzed the effect that secondary biofilm treatment systems had on particle size distribution (PSD) in the effluent of wastewater treatment plants. This study focused on three biofilm technologies (i.e. a submerged biofilter system, a trickling filter system, and a rotating biological contactor system) in three working urban wastewater treatment plants. For this purpose, the variation of the fit parameters was analyzed after modeling the PSD with the power law. The greatest reduction in particle number was obtained with the submerged biofilter system, followed by the trickling filter system. In contrast, the rotating biological contactor showed the smallest reduction in particle number under the conditions of our study. It was also found that the variation of the fit parameters of the PSD, caused by the wastewater treatments was related to other wastewater parameters, such as the chemical oxygen demand, suspended solids, and the mean particle size. This showed a direct relation between these parameters and the particles in wastewater.  相似文献   
8.
Advanced Oxidation Processes for Wastewater Treatment: State of the Art   总被引:2,自引:0,他引:2  
The protection and conservation of natural resources is one of the main priorities of modern society. Water is perhaps our most valuable resource, and thus should be recycled. Many of the current recycling techniques for polluted water only concentrate the pollutant without degrading it or eliminating it. In this sense, advanced oxidation processes are possibly one of the most effective methods for the treatment of wastewater containing organic products (effluents from chemical and agrochemical industries, the textile industry, paints, dyes, etc.). More conventional techniques cannot be used to treat such compounds because of their high chemical stability and/or low biodegradability. This article describes, classifies, and analyzes different types of advanced oxidation processes and their application to the treatment of polluted wastewater.  相似文献   
9.
Water, Air, & Soil Pollution - A novel bacterium, Bacillus megaterium strain ISO-2, capable of the degradation of bisphenol A (BPA), was isolated from wastewater collected from a polycarbonate...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号