首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
农作物   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed.  相似文献   
2.
Cultivated organic soils make a significant contribution to phosphorus (P) leaching losses from agricultural land, despite occupying a small proportion of cultivated area. However, less is known about P mobilisation processes and the P forms present in peat soils compared with mineral soils. In this study, P forms and their distribution with depth were investigated in two cultivated Histosol profiles, using a combination of wet chemical extraction and P K‐edge X‐ray absorption near‐edge structure (XANES) spectroscopy. Both profiles had elevated P content in the topsoil, amounting to around 40 mmol kg?1, and P speciation in both profiles was strongly dominated by organic P. Topsoils were particularly rich in organic P (P‐org), with relative proportions of up to 80%. Inorganic P in the profiles was almost exclusively adsorbed to surface reactive aluminium (Al) and iron (Fe) minerals. In one of the pro‐files, small contributions of Ca‐phosphates were detected. A commonly used P saturation index (PSI) based on ammonium‐oxalate extraction indicated a low to moderate risk of P leaching from both profiles. However, the capacity of soil Al and Fe to retain P in organic soils could be reduced by high competition from organic compounds for sorption sites. This is not directly accounted for in PSI and similar indices. Accumulation of P‐org in the topsoil may be attributable by microbial peat decomposition and transformation of mineral fertiliser P by both microbiota and crops. Moreover, high carbon–phosphorus ratio in the surface peat material in both profiles suggests reduced net mineralisation of P‐org in the two soils. However, advancing microbial peat decomposition will eventually lead to complete loss of peat horizons and to mineralisation of P‐org. Hence, P‐org in both profiles represents a huge potentially mobilised P pool.  相似文献   
3.
Purpose

Recent research suggests that Swedish organic arable soils have been under-recognized as a potential source of phosphorus (P) loading to water bodies. The aim of this study was to compare P losses through leaching from organic and high-fertility mineral soils. In addition, the effectiveness of a magnesium-salt-coated biochar applied below the topsoil as a mitigation strategy for reducing P losses was evaluated.

Materials and methods

Phosphorus leaching was measured from four medium- to high-P arable soils, two Typic Haplosaprists (organic 1 and 2), a Typic Hapludalf (sand), and an unclassified loam textured soil (loam), in a 17-month field study utilizing 90-cm-long lysimeters. A magnesium-salt-coated biochar was produced and characterized using X-ray powder diffraction (XPD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and X-ray adsorption (XANES) spectroscopy, and its phosphate adsorption capacity was determined at laboratory scale. It was also applied as a 3-cm layer, 27 cm below the soil surface of the same lysimeters and examined as a mitigation measure to reduce P leaching.

Results and discussion

Total-P loads from the 17-month, unamended lysimeters were in the order of organic 2 (1.2 kg ha?1)?>?organic 1 (1.0 kg ha?1)?>?sand (0.3 kg ha?1)?>?loam (0.2 kg ha?1). Macropore flow, humic matter competition for sorption sites, and fewer sorption sites likely caused higher P losses from the organic soils. Analysis by XRD and SEM revealed magnesium was primarily deposited as periclase (MgO) on the biochar surface but hydrated to brucite (Mg(OH)2) in water. The Langmuir maximum adsorption capacity (Qmax) of the coated biochar was 65.4 mg P g?1. Lysimeters produced mixed results, with a 74% (P?<?0.05), 51% (NS), and 30% (NS) reduction in phosphate-P from the organic 1, organic 2, and sand, respectively, while P leaching increased by 230% (NS) from the loam.

Conclusions

The findings of this study indicate that P leached from organic arable soils can be greater than from mineral soils, and therefore, these organic soils require further investigation into reducing their P losses. Metal-enriched biochar, applied as an adsorptive layer below the topsoil, has the potential to reduce P losses from medium- to high-P organic soils but appear to be less useful in mineral soils.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号