首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  9篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 265 毫秒
1
1.
Humic acids (HAs) from four soils were fractionated by size exclusion chromatography (SEC) on Sephadex G-75. Three fractions were obtained in all humic acids, collected and assayed by Polyacrylamide gel electrophoresis (PAGE). The unfractionated HA from each soil was used as reference. Each chromatographic fraction formed one electrophoretic zone corresponding closely to one band of the reference sample with some admixture of the fractions preceding or following. The results indicate that fractionation of HAs by tandem SEC-PAGE can be successfully used for obtaining fractions of reduced polydispersity and different electrophoretic mobilities. Pyrolysis/methylation-gas chromatography-mass spectrometry of the full size preparations of HA and fractions with exactly defined molecular size and electrophoretic mobility showed a different distribution in humic components, mainly lipids, lignin derivatives and N-containing compounds.  相似文献   
2.
Tandem size-exclusion chromatography and polyacrylamide gel electrophoresis were used for obtaining stable fractions of different molecular sizes and electrophoretic mobilities from chernozem humic acids (HAs). The obtained fractions were analyzed using solid-phase 13C NMR. The tendencies of the changes in the aromatic and aliphatic components of the HA fractions with different molecular sizes and electrophoretic mobilities were experimentally revealed. The aromatic-to-aliphatic carbon ratio Carom (165–108 ppm)/Caliph (108-0 ppm) was used for comparing the degrees of aliphaticity and aromaticity of the HA macromolecules. This ratio increased by more than five times when going from the high-molecular-weight to the low-molecular-weight fractions and largely determined their hydrophilic properties. The obtained results can be useful for the interpretation of the structural organization and the ecological functions of soil HAs and their fractions.  相似文献   
3.
The polyacrylamide gel electrophoresis of chernozem humic acids (HAs) followed by ultraviolet detection (λ = 312 nm) has revealed a new highly fluorescent fraction that has the highest electrophoretic mobility and the lowest nominal molecular weight (NMW). The preparative isolation of the fraction has been performed using the multiple microfiltration of the same HA sample in a 7 M carbamide solution on a membrane with a nominal pore size of 5 kDa. Thirty ultrafiltrates with NMW < 5 kDa and different fluorescence maximums in the region of 475–505 nm have been prepared, as well as a nonfluorescent concentrate with NMW > 5 kDa. Fluorescence maximums at and below 490 nm have been noted only in the first four ultrafiltrates. All the ultrafiltrates have been combined into the fraction with NMW < 5 kDa, which has been successively passed through membranes of 3 and 1 kDa. Solutions of subfractions F 3–5 kDa, F 1–3 kDa, and F < 1 kDa with fluorescence maximums at 505, 488, and 465 nm, respectively, have been prepared. The F < 1 kDa subfraction with the lowest NMW had the highest fluorescence intensity. The distribution of the fluorescence maximums in the ultrafiltrates has indicated the presence of at least two groups of fluorophores and has confirmed the supramolecular organization of the extracted soil HAs.  相似文献   
4.
Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC–PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation–emission maxima have been identified in the excitation wavelength range of 250–500 nm. It has been found that fractionation by the SEC–PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.  相似文献   
5.
Eurasian Soil Science - Chernozem humic acid (HA) fractions with nominal molecular sizes (MS) &gt;100, 30–100, 5–30 and &lt;5 kDa were obtained, using a combination of...  相似文献   
6.
Eurasian Soil Science - By combining low-pressure size-exclusion chromatography with analytical polyacrylamide gel electrophoresis, three stable electrophoretic fractions A, B, and C + D were...  相似文献   
7.
Eurasian Soil Science - The humin-like substances of compost at the beginning of transformation and after 130 days were studied using a set of analytical methods, including analytical...  相似文献   
8.

Purpose

The fractionation of soil humic acids (HAs) according to their hydrophobicity is a common procedure in the study of this polydispersed complex natural mixture, so that reversed-phase high-performance liquid chromatography (RP-HPLC) is used resulting in humic components of differing hydrophobic/hydrophilic properties. However, a comparative study of the hydrophobicity of fractions isolated from different soil HAs have not been addressed so far.

Materials and methods

The RP-HPLC with online absorbance detection was used for analysis of International Humic Substances Society soil standard HAs, chernozem soil HAs, and their electrophoretic fractions A, B, and C?+?D, obtained by tandem size exclusion chromatography–polyacrylamide gel electrophoresis. The strong relationship between hydrophobicity, electrophoretic mobility (EM), molecular size (MS), specific absorbance at 280 nm and aromaticity of HAs fractions was found.

Results and discussion

Independently of soil HAs genesis fraction A with lowest EM and highest MS is essentially more hydrophobic (60–73 % of the fraction amount remained adsorbed on the RP column) than medium EM and MS fraction B (33–47 % of the fraction amount remained adsorbed on the RP column). The lowest hydrophobicity belongs to fraction C?+?D with highest EM and lowest MS.

Conclusions

The most hydrophilic aromatic fraction C?+?D seems to have been bound with other mostly aliphatic hydrophobic fractions A and B through non covalent (possibly hydrogen) bonds. These data could be relevant to better understanding the overall makeup of soil HAs and their structural organization.  相似文献   
9.
Electrophoresis in 10% polyacrylamide gel in the presence of denaturants and size-exclusion chromatography in Sephadex G-75 in 7 M urea were used for the comparative analysis of humic substances isolated from a typical chernozem, soddy-podzolic soil, and chestnut soil and from the easily decomposable organic matter (plant detritus) contained in these soils. After the electrophoresis, the gel with naturally colored bands of humic substances was further stained with a dye specific for proteins by immersing into a solution containing Coomassie Brilliant Blue R-250 and CuSO4. The electrophoretic and chromatographic analyses showed that humic substances from the soils and the corresponding detritus fractions significantly differed in the intensity of the natural color of the electrophoretic fractions, the molecular-weight distribution, and the color of the electrophoretic fractions colored by the protein-specific dye (which was first discovered in this study). The hypothesis of Tyurin and Aleksandrova suggesting that the transformation of humus sources (plant detritus) into humic substances proceeds in the direction from the high-molecular compounds to the low-molecular compounds was experimentally confirmed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号