首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  12篇
植物保护   2篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2000年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: Metribuzin is a widely used herbicide that has been identified as a groundwater contaminant. In this study, slow‐release formulations of metribuzin were designed by encapsulating the active ingredient in phosphatidylcholine (PC) vesicles and adsorbing the vesicles onto montmorillonite. RESULTS: The maximum active ingredient content in the slow‐release formulations was 246 g kg?1. Infrared spectroscopy results revealed that the hydrophobic interactions between metribuzin and the alkyl chains on PC were necessary for encapsulation. In addition, water bridges connecting the herbicide and the PC headgroup enhanced the solubility of metribuzin in PC. Adsorption experiments in soils were performed to evaluate the relationship between sorption and leaching. Funnel experiments in a sandy soil revealed that the herbicide was not irreversibly retained in the formulation matrix. In soil column experiments, PC–clay formulations enhanced herbicide accumulation and biological activity in the top soil layer relative to a commercial formulation. PC–clay formulations also reduced the dissipation of metribuzin by a factor of 1.6–2.5. CONCLUSIONS: A reduction in the recommended dose of metribuzin can be achieved by employing PC–clay formulations, which reduces the environmental risk associated with herbicide applications. Moreover, PC and montmorillonite are non‐toxic and do not negatively affect the environment. Copyright © 2010 Society of Chemical Industry  相似文献   
2.
The influence of two organic amendments consisting of an urban waste compost (SUW) and a commercial amendment from olive mill wastes (OW) was assessed on the sorption properties and leaching of the ionizable herbicide imazaquin on four soils with different physicochemical characteristics. A loamy sand soil (CR), a loam soil (P44), a silt loam soil (AL), and a clay soil (TM), with low-medium organic matter contents, were chosen. Sorption-desorption experiments were performed on the original soils and on a mixture of these soils with the organic amendments at a rate of 6.25% (w/w). These mixtures were used just after preparation and after aging for 3 months. Imazaquin adsorption was higher on AL soil because of its high content of amorphous iron oxides, whereas it was related to the soils' organic matter (OM) contents on TM and CR soils and to acid pH on P44 soil. Addition of exogenous OM to soils caused a decrease in the adsorption of the herbicide with the only exception of CR soil, due to blocking of adsorptive surfaces and/or equilibrium pH rise. The extent of this decrease was dependent only on the nature of the added amendment on AL soil. The adsorbed amounts of imazaquin on aged organic fertilized soils were usually fairly close to that on original soils. Results of soil column experiments indicate that addition of exogenous organic matter cannot be considered as a regular practice for retarded movement of imazaquin.  相似文献   
3.
FTIR study of glyphosate-copper complexes   总被引:4,自引:0,他引:4  
Complexes of the herbicide glyphosate (GPS) and the heavy metal Cu were studied by infrared spectroscopy under controlled pH, in order to know the mechanisms involved in the formation of these complexes. In CuGPS(-), the IR spectrum shows participation of the carboxylate and phosphonic moieties of the GPS molecule. The formation of the complex produces a lower symmetry in the phosphonate group because of loss of the resonance situation of PO(3)(2)(-) groups, with a subsequent split of their absorption bands. Carboxylate groups are participating by forming unidentate complexes. No conclusion is reached about the involvement of the amino group, but previous EPR findings indicate coordination of GPS to Cu via nitrogen. Consequently, glyphosate in this complex functions with a tridentate character by forming two chelate rings. A study of the CuGPSH species was not possible due to overlapping of its absorption bands with those of free GPS species.  相似文献   
4.
The design and tests of slow-release formulations of sulfometuron (SFM), an anionic sulfonylurea herbicide, are described. The formulations are based on incorporation of the herbicide in octadecyltrimethylammonium (ODTMA) micelles, which adsorb on a clay mineral, montmorillonite. An optimization of herbicide/micelle clay ratios yielded high adsorption of SFM (95%), and at a 1% (w/w) water suspension only 0.5% of the adsorbed SFM was released at times varying from hours to 9 days. An analytical test in Seville soil showed that under excessive irrigation (400 mm) 100% of the commercial formulation leached, whereas the micelle-clay formulations showed only 50-65% elution. A plant bioassay in Rehovot soil showed that the commercial dispersible granule formulation (Oust, 75% ai sulfometuron methyl) yielded only 23% root elongation inhibition at the top 5 cm of the soil, whereas complete inhibition was achieved with the micelle-clay formulation. The detected concentration of SFM for the micelle-clay formulation at a depth of 15-20 cm was half of that detected for the commercial one, indicating a reduction in leaching when applying the micelle-clay formulation. A 10-fold reduction in the applied dose of SFM in the micelle-clay formulations resulted in good herbicidal activity of 60-87% inhibition. These characteristics make the new formulation promising from the environmental and economic points of view.  相似文献   
5.
Adsorption-desorption studies of norflurazon on 17 soils of very different characteristics have been performed using a batch equilibration method and correlated to its mobility, activity, and persistence in soils. The influence of different soil properties and components on norflurazon adsorption was determined. The significant variables were organic matter (OM) content and iron and aluminum oxides, which accounted for 85 and 11% of the variability, respectively. Norflurazon desorption from soils was hysteretic in all cases, being more irreversible at the lowest herbicide concentrations adsorbed. The percentage of norflurazon eluted from columns of selected soils reached almost 100% in soils with sand content >80% and OM <1%, but in the soil which gave the highest sorption, herbicide residues were not detected at depths >16 cm. The herbicidal activity of norflurazon was followed by measuring its bleaching effect on soybean plants, and the herbicide concentration required to give 50% chlorophyll inhibition (CI(50)) was calculated. CI(50) was achieved on a sandy soil with 0.08 mg x kg(-)(1), whereas 1.98 mg x kg(-)(1) was necessary for the soil that presented maximum norflurazon adsorption.  相似文献   
6.
The effects of application of composted olive mill wastewater sludge (A) and depotassified sugarbeet vinasse (V) on total diethylenetriaminepentaacetic acid (DTPA) and sequential extracted micronutrients were investigated. The mineralogy of the fine fraction of soils was also studied. The soils used were a Typic Rhodoxeralf (soil R), a Typic Xeropsamment (soil S), and a Typic Xerorthent (soil C). Fertilization with A and V during 3 years, in general did not significantly affect the total concentration of Fe, Cu, Mn, and Zn versus the control. However, the elements extracted with DTPA generally increased with the organic amendments, more with A than with V. The BCR (European Community Bureau of Reference) sequential extraction indicated that the addition of organic matter generally increased Zn and Mn in the two more available fractions. A great amount of Fe was found in the second and third fractions from the unamended and amended soils. Nevertheless, the sum of the three fractions was enhanced for the organic amendment, except for calcareous soil. The distribution of these elements in the different fractions was significantly affected by the type of soil. The addition of both fertilizers caused modifications in particle size and consequence redistribution of the calcite content between the different fractions.  相似文献   
7.
Metal availability in soils is strongly related with sorption processes and the possible association of the metal ions with a particular particle-size fraction. Therefore, studies of metal retention by a soil will be aided if retention by different size fractions is also studied. Sorption of copper on a calcareous soil and its textural fractions was studied in batch assays. The soil was amended over 3 years with two agroindustrial residues, a composted olive mill sludge and vinasse. Sorption of Cu on the calcareous soil was very large (110 mmol kg−1) and was enhanced by both amendments. Metal retention by the clay fraction of the unamended soil was less than that of the whole soil, but increased dramatically after amendment with olive mill sludge. This was caused by the larger calcite content in this fraction as well as the increase in organic matter content. The amount of Cu sorbed was very large in the silt fraction, again because of the carbonate content of this fraction (300–460 g kg−1). Copper sorption decreased dramatically after removal of carbonate. Copper retention tended to be enhanced by organic amendments. This was particularly evident in the silt fraction, as a consequence of the organic matter accumulation in this fraction.
Copper sorption on the calcareous soil and its silt fractions (unamended and amended) was irreversible. By contrast, desorption was measurable from all the carbonate-free samples (both whole soil and textural fractions), although in all cases a large hysteresis was observed. We conclude that carbonate was the main component responsible for the lack of reversibility.  相似文献   
8.
The study aimed to reduce leaching of the hydrophobic herbicide norflurazon (4-chloro-5-methylamino-2-(alpha,alpha, alpha)-trifluoro-m-tolylpyridazin-3-(2H)-one) by adsorbing it on clays or organo-clays. The surface of the clay mineral montmorillonite was modified from hydrophilic to hydrophobic by preadsorbing it with organic cations, of which thioflavin-T (TFT) at a loading corresponding to (5)/(8) of the cation-exchange capacity of the clay mineral yielded the highest affinity of adsorption of norflurazon. Pillared clay (PC) used without organic cations exhibited enhanced affinity for norflurazon adsorption, much higher than that of montmorillonite or sepiolite. Fourier transform infrared (FTIR) results showed interactions between aromatic moieties of preadsorbed TFT and the herbicide. Stronger interaction of the herbicide with a clay mineral or organo-clay corresponded to its slower release. Formulations prepared on the basis of montmorillonite-TFT and PC were more effective in reducing herbicide leaching in soil columns in comparison to the commercial formulation, whereas the herbicidal efficiencies were comparable.  相似文献   
9.
Atrazine and alachlor formulations were designed by encapsulating the herbicide molecules into phosphatidylcholine (PC) vesicles, which subsequently were adsorbed on montmorillonite. PC and montmorillonite are classified as substances of minimal toxicological risk by the U.S. EPA. PC enhanced alachlor and atrazine solubilities by 15- and 18-fold, respectively. A 6 mM PC:5 g/L clay ratio was found as optimal for PC adsorption on the clay. Active ingredient contents of the PC-clay formulations ranged up to 8.6% for atrazine and 39.5% for alachlor. Infrared spectroscopy showed hydrophobic interactions of herbicide molecules with the alkyl chains of PC, in addition to hydrophilic interactions with the PC headgroup. Release experiments in a sandy soil showed a slower rate from the PC-clay formulations than the commercial ones. Soil column experiments under moderate irrigation and bioactivity experiments indicate that a reduction in the recommended dose of alachlor and atrazine can be accomplished by using PC-clay formulations.  相似文献   
10.
Photostable formulations of the herbicide norflurazon [4-chloro-5-(methylamino)-2-(alpha,alpha, alpha-trifluoro-m-tolyl)pyridazin-3-(2H)-one] were achieved by adsorbing it on pillared clay or on montmorillonite preadsorbed with the organic cation thioflavin T (TFT). Diffuse reflectance Fourier transform infrared spectra showed the existence of strong interactions between the aromatic moieties of preadsorbed TFT and the herbicide, particularly after irradiation. The photostabilization of norflurazon obtained with TFT-clay was mainly due to energy transfer from the herbicide to the organic cation via pi-pi interactions. An additional mechanism is the lower production of radicals from the clay when the clay mineral surface is covered with the organic cation. These radicals are responsible for the enhanced photodegradation observed when norflurazon was irradiated in the presence of untreated montmorillonite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号