首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   4篇
农学   2篇
综合类   6篇
畜牧兽医   2篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2009年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
【背景】 类黄酮是大豆中积累的一类重要的植物次生代谢产物,参与大豆的生长、发育和抗逆等诸多生理活动。由UDP-糖基转移酶(UGT)催化的糖基化修饰是类黄酮生物合成的关键步骤。【目的】 通过系统研究大豆UGT73C19编码重组酶的体外酶活特性和体内特性,完善大豆黄酮类化合物合成和积累的机制,为大豆品质的遗传改良提供基因资源和理论基础。【方法】 通过高效液相色谱(HPLC)的方法检测大豆核心种质资源叶片中类黄酮的种类和含量,通过qRT-PCR的方法检测了UGT的表达水平。以大豆Williams 82叶片cDNA为模板,克隆得到UGT73C19的编码区序列。使用MEGA5和DNAMAN软件进行多重序列比对,并构建进化树。通过原核表达系统获得UGT73C19的重组蛋白,分析UGT73C19重组蛋白对各种类黄酮苷元的糖基转移活性,并通过高效液相色谱-质谱(HPLC-MS)对产物进行鉴定,确定重组蛋白的糖基化位点。利用qRT-PCR技术对UGT73C19在大豆不同组织的表达水平进行分析。构建植物过量表达载体,通过花序浸染法转化拟南芥,获得UGT73C19表达量高的纯合株系,检测转基因株系叶片和种子中类黄酮的种类和含量。【结果】 通过HPLC分析大豆核心种质资源叶片类黄酮成分,发现不同品种中类黄酮的成分和含量存在明显差异。根据类黄酮成分的不同,将大豆核心种质分为12种不同的类型。大豆核心种质资源叶片中总黄酮的含量与UGT73C19的表达水平呈正相关关系。克隆得到UGT73C19的编码区序列,全长1 482 bp,编码493个氨基酸,UGT73C19蛋白在C-端有一个保守的PSPG结构域。体外酶活分析表明,重组的UGT73C19蛋白对6种类黄酮苷元(山奈酚、槲皮素、杨梅素、芹黄素、大豆苷元和染料木素)都具有糖基转移活性,其中对槲皮素的催化效率最高;糖基化位点分别位于类黄酮的5位和7位羟基上,重组UGT73C19蛋白的糖基化底物和位点具有多样性。过量表达UGT73C19的拟南芥叶片和种子中的类黄酮总量明显升高,其中叶片中总黄酮含量提高49%—70%,种子中总黄酮的含量提高34%—37%;尤其是种子中槲皮素3-O鼠李糖的含量显著增加。【结论】 UGT73C19蛋白是催化合成大豆中多个类黄酮糖苷的关键糖基转移酶,过量表达UGT73C19可以提高转基因植物中黄酮醇糖苷和类黄酮的含量。  相似文献   
2.
我国豌豆生产和育种的现状与问题   总被引:1,自引:0,他引:1  
豌豆是经济和粮菜饲兼用作物,在我国农业可持续发展中发挥着重要作用.对我国豌豆生产概况、育种历程、育种目标、分子育种等方面进行概述,分析当前我国豌豆生产和育种中存在的问题并提出相应对策,以期为我国豌豆生产和育种提供有益参考.  相似文献   
3.
用限制性内切酶HindⅢ酶切分别含有CryIA(α)和CryIA(c)基因的pGEM—4zf质粒得到Ubiquitin(玉米泛素)基因启动子驱动的CryIA(α)和CryIA(c)基因表达盒,将它们分别插入到用HindⅢ开环的pCAMBIA3300(含编码抗除草刑草丁辟的bar基因)载体上形成中间载体p3300—bt。采用Pfu高保真DNA聚合酶用PCR的方法从质粒pBI121-ptα上扩增得到含CaMV35S启动子和NOS终止子的ptα基因表达盒,然后插入到用Smα Ⅰ切开的中间载体p3300—bt中。获得带有抗性基因的双价抗虫基因表达载体p3300—bt—ptα。通过根癌农杆菌介导的叶盘法转化烟草品种百日红,获得一批抗除草刑的转基因烟草植株。  相似文献   
4.
应用偏最小二乘法建立红三叶(Trifolium pratense)多种异黄酮及总异黄酮定量分析的近红外模型。用验证集对模型的预测性能进行了评价。结果表明:黄豆黄苷、芒柄花黄素及总异黄酮的模型预测效果较理想。其中,黄豆黄苷模型系统偏差为-0.007,相关系数为0.83,芒柄花黄素模型系统偏差为0.010,相关系数为0.91,总异黄酮模型系统偏差为-0.185,相关系数为0.90。  相似文献   
5.
:中豌 10 号是中国农业科学院北京畜牧兽医研究所以中豌 4 号为母本、草原 23 号为父本,通过系统选育法育成的早熟、丰产型豌豆品种。在品种比较试验和区域试验中分别较对照中豌 4 号增产 8.6% 和 11.2%(北京试验点)。该品种籽粒较大(千粒重约 270g),早熟(在北京地区春播生育期 65~68d)、丰产,并具有抗倒伏、潜叶蝇和白粉病发病较轻等特性。2016 年 7月通过第七届全国草品种审定委员会审定,登记为育成品种。  相似文献   
6.
【目的】分离紫花苜蓿(Medicago sativa L.)油菜素内酯(brassionsterinds,BRs)合成酶基因MsDWF4,分析基因表达特性,开展基因的耐盐性研究,为揭示MsDWF4对紫花苜蓿非生物胁迫的调控机制提供参考。【方法】根据已知的拟南芥DWF4序列,应用同源克隆技术获得紫花苜蓿MsDWF4,对序列进行生物信息学分析。利用qRT-PCR技术分析MsDWF4的组织表达特异性,及其在多种非生物胁迫(高温、冷害、干旱和高盐)和激素(生长素、油菜素内酯、脱落酸和茉莉酸)处理下的表达模式;构建MsDWF4超表达载体,利用农杆菌介导遗传转化法转化紫花苜蓿,获得超表达MsDWF4的紫花苜蓿株系,用高盐(200 mmol·L -1 NaCl)处理紫花苜蓿转基因株系并结合抗氧化酶活性分析,研究MsDWF4是否提高紫花苜蓿的耐盐性。【结果】获得MsDWF4的cDNA序列,其CDS全长1 470 bp,编码489个氨基酸,该基因编码的蛋白质为P450超家族成员,共含有67个激酶磷酸化位点。序列分析和系统发育树分析表明紫花苜蓿MsDWF4与蒺藜苜蓿DWF4的亲缘关系最近,与禾本科的亲缘关系最远。组织特异性表达分析表明,MsDWF4在根尖中表达量最高,花和叶中次之。高温、冷、PEG、NaCl、ABA和IAA均诱导该基因在植株地上部和根部的表达;在BR处理下,MsDWF4在地上部下调表达,而在根部先被诱导后被抑制;JA处理下,MsDWF4在地上部和根中皆被抑制。构建35S∷MsDWF4超表达载体,并通过农杆菌介导的方式转化紫花苜蓿,PCR鉴定结果显示MsDWF4已经成功转入紫花苜蓿,并获得6个转基因阳性株系。盐胁迫处理下,转基因株系MsDWF4的表达量和抗氧化酶活性均显著高于对照。【结论】获得紫花苜蓿油菜素内酯合成酶基因MsDWF4的CDS序列;该基因在根尖等生长旺盛部位表达最高,基因表达响应多种逆境胁迫和外源激素处理;MsDWF4提高转基因紫花苜蓿对盐胁迫的抗性。MsDWF4可能参与转基因紫花苜蓿的多种逆境响应过程,并且正向调控紫花苜蓿的耐盐性。  相似文献   
7.
【背景】分枝是重要的产量构成因子,在紫花苜蓿育种中至关重要。发掘紫花苜蓿分枝相关基因并明确其作用机理,有助于加快紫花苜蓿高产优质育种。MAX2是重要的分枝相关基因,参与多种植物的分枝调控。【目的】通过对紫花苜蓿MsMAX2功能的研究,为建立MsMAX2调控紫花苜蓿分枝发育分子机制奠定基础。【方法】利用同源克隆的方法从紫花苜蓿中获得MsMAX2的基因序列。通过Expy Protparatam、DNAMAN和MEGA-X等软件对MsMAX2进行序列分析并构建系统进化树。采用实时荧光定量PCR(qPCR)方法分析MsMAX2在紫花苜蓿中的组织表达特异性。运用烟草瞬时表达系统确定MsMAX2蛋白的亚细胞定位。利用农杆菌介导的转化方法获得转基因拟南芥,以明确MsMAX2的基因功能。用酵母双杂交技术探明与MsMAX2互作的蛋白。【结果】MsMAX2包含长度为2 136 bp的开放阅读框,编码由711个氨基酸构成的蛋白,属于F-box蛋白超家族。系统进化分析表明,MsMAX2及其同源基因的进化与物种的分化高度相似,表明其是一个功能保守的基因。MsMAX2在紫花苜蓿的颈部组织中表达量最高,苗期叶片和授粉当天的花序中表达量较高,根中次之,其他组织表达量相对较低,暗示其在紫花苜蓿多个组织中发挥作用。亚细胞定位试验表明MsMAX2蛋白定位于细胞核中。在拟南芥max2突变体中过表达MsMAX2可互补突变体的多分枝表型。酵母双杂交试验表明MsMAX2与激素受体D14存在依赖于独脚金内酯的相互作用。【结论】获得在紫花苜蓿颈部组织中高水平表达的MsMAX2,其编码的蛋白定位于细胞核中;MsMAX2在拟南芥多分枝突变体max2中过表达时,能够互补突变表型,表明MsMAX2参与植物的分枝调控,其功能保守。  相似文献   
8.
骨质疏松症严重威胁着人类的健康,鲑鱼降钙素是一种治疗骨质疏松的有效药,但是昂贵的价格限制了它的使用。本研究以生菜作为生物反应器来表达降钙素中生物活性较高的鲑鱼降钙素,以期通过鲜食表达降钙素的生菜达到防止或治疗骨质疏松目的,同时可大大降低生产成本。首先按植物偏爱密码子设计合成了编码鲑鱼降钙素的msCT基因,其次考虑到转基因产品安全性问题,构建植物双元表达载体p35S-2300-twinT—DNA::pil—msCT::noster,利用农杆菌介导进行生菜转化。经PCR和Southem blot确认得到了12株独立的转基因植株。同时RT-PCR分析表明鲑鱼降钙素在To代转基因植株中成功表达,而且表达量存在显著差异,为利用植物生物反应器生产治疗用降钙素奠定了基础。  相似文献   
9.
【目的】CIPK是植物响应逆境胁迫信号通路中一类重要的蛋白激酶,可与CBL形成CBL-CIPK复合物,启动细胞内相关应答基因的表达而应对各种非生物胁迫。发掘并研究紫花苜蓿MsCIPK基因响应非生物胁迫的分子机理,有助于揭示紫花苜蓿抗逆生物学基础,为紫花苜蓿抗逆育种提供新的基因资源。【方法】通过PCR技术克隆MsCIPK2,使用生物信息学工具分析基因序列,利用qRT-PCR技术分析MsCIPK2,以及与其互作的4个CBL基因(MsCBL2MsCBL6MsCBL7MsCBL10)在紫花苜蓿各组织中的表达水平,在烟草叶片表皮细胞中,瞬时表达pCAMBIA1302-GFP-MsCIPK2融合表达载体,通过激光共聚焦显微镜观察进行亚细胞定位,利用酵母双杂交技术分析MsCIPK2与4个MsCBLs蛋白互作情况,利用发根农杆菌诱导紫花苜蓿产生过量表达MsCIPK2的毛状根,利用qRT-PCR技术分析转基因毛状根株系中相关基因的表达水平。【结果】通过PCR扩增获得MsCIPK2片段,该基因CDS为1 230 bp,编码409个氨基酸,具有典型的CIPK家族的ATP结合位点、激活环、NAF motif和PPI motif等结构域。MsCIPK2在紫花苜蓿根中表达量最高,在花中表达量最低。亚细胞定位结果显示,MsCIPK2蛋白定位于内质网。酵母双杂交试验结果显示,MsCIPK2蛋白与MsCBL2、MsCBL6、MsCBL7和MsCBL10蛋白具有相互作用,且与MsCBL10蛋白相互作用较强。MsCBL2MsCBL6MsCBL10在紫花苜蓿根中表达量最高,MsCBL7在荚中表达量最高。qRT-PCR结果表明,过量表达MsCIPK2的毛状根中响应非生物胁迫基因ATPaseP5CSCYP705A5COR47HAK5RD2的表达量均明显上调。在200 mmol·L-1 NaCl和20%PEG处理条件下,与对照相比,过量表达MsCIPK2毛状根的丙二醛含量降低,SOD活性、脯氨酸含量和可溶性糖含量增高。【结论】紫花苜蓿MsCIPK2与MsCBLs蛋白互作,主要在根中表达并响应盐和干旱胁迫,过量表达MsCIPK2可以提高紫花苜蓿的耐盐性和耐旱性,MsCIPK2可作为提高紫花苜蓿抗逆育种的候选基因。  相似文献   
10.
随着消费者对于食品安全和生命健康重视程度的日益加强,植物蛋白产品越来越受到市场的青睐。豌豆蛋白是植物肉和植物蛋白饮料的主要原料之一,由于含有人体所需要的全部必需氨基酸、无过敏原、零胆固醇、低脂肪等优点,呈现出巨大的发展潜能。近年来,全球对豌豆蛋白的需求出现井喷式增长。从世界豌豆蛋白生产概况、发展前景、存在问题及解决方案等方面进行综述,以期为豌豆蛋白产业提供有益参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号