首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   4篇
基础科学   5篇
  5篇
综合类   1篇
农作物   1篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2019年   1篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
跨式油茶果收获机在丘陵山地作业时需要较大的牵引力,且要求行走平稳。本文基于机液联合仿真技术对跨式油茶果收获机底盘行走液压系统进行设计,以达到动力匹配及行走性能较优的目的。在RecurDyn软件中建立了跨式收获机履带底盘虚拟样机模型,采用谐波叠加法构建了B级路面谱,仿真分析了跨式履带底盘直线行驶和差速转向的动力学特性。通过AMESim与RecurDyn软件对收获机行走系统进行机液联合仿真,研究底盘在直线行驶与差速转向工况时行走马达液压特性。研制了全液压驱动的跨式油茶果收获机,进行了地面直线行驶与差速转向测试,结果表明:底盘直线行驶偏移率为1.7%;直线行驶时,行走马达流量稳定在23 L/min,压力稳定在1.5 MPa;差速转向时,行走马达流量稳定在22 L/min,压力在2~12 MPa范围内波动,验证了跨式履带底盘行走液压系统的稳定性。  相似文献   
2.
履带式高地隙油茶果振动采收机设计与试验   总被引:1,自引:0,他引:1  
针对油茶人工采收效率低,劳动力成本大,且油茶果成熟期短、花果同期等问题,设计了可实现连续振动落果和收集的履带式高地隙油茶果振动采收机。采收机采用骑跨式车架沿油茶树种植行行走,利用曲柄摇杆机构驱动多排阵列的指排杆按照一定的运动轨迹对树冠两侧同时击打作业,落果通过收集板汇集后输送到果箱。根据击打轨迹对采收机击打装置的曲柄摇杆机构进行设计,并用ADAMS软件验证指排架运动轨迹。通过ANSYS软件对击打装置机架和采收机车架进行有限元模态分析,获得其前6阶固有频率,确定其不会发生共振。为接收振动掉落的油茶果,设计了高低错落分布的收集板,不仅能接收落果,且能顺利避开树干,实现整机在运动中完成振动落果和收集作业。最后,加工装配振动采收机样机,在击打液压马达转速为360 r/min条件下进行油茶林地整机试验,试验结果表明,油茶果采收率为87.56%,花苞掉落率为25.86%,满足油茶果采收要求。  相似文献   
3.
基于贪心遗传算法的穴盘苗补栽路径优化   总被引:5,自引:0,他引:5  
温室育苗需要通过补苗移栽作业用健康钵苗替换穴盘内未发芽或劣质的钵苗,保证钵苗的质量。自动补苗移栽机可利用机器视觉获取穴盘苗健康信息,控制末端执行器抓取钵苗进行补苗作业,移栽效率高。穴盘内需补苗孔穴的位置具有随机性,对补栽路径进行规划,可进一步提高补栽效率。本文综合贪心算法和遗传算法的特性提出一种贪心遗传算法,在分段步长取8,优化代数取100时,可实现稀疏和密集穴盘的补栽路径优化,具有鲁棒性。贪心遗传算法所规划补苗路径长度与全遗传算法接近,均值差在443 mm以内;相比优化前的固定顺序法,贪心遗传算法路径长度可缩短33.8%~41.3%,缩短长度随空穴数量增加而加长;贪心遗传算法与全遗传算法规划补栽路径耗时分别为1.81 s和5.59 s。对比可知,贪心遗传算法更有利于自动移栽机输送单元和移栽单元间的动作衔接,可进一步提高自动移栽机效率。  相似文献   
4.
针对传统农业机器人抓取过程中视觉识别番茄果实尺寸和姿态存在枝叶遮挡的问题,提出了一种基于视触觉感知的番茄尺寸和姿态解析方法。在果实抓取过程中通过视触觉传感器得到果实外轮廓接触局部点云信息,然后通过相机参数标定以及各手指关节变换矩阵,将不同传感器坐标系下的点云信息变换到同一基坐标系下,进而通过点云改进PCA算法和ICP算法解析抓取果实的尺寸和姿态信息。为了评估所提出解析方法的性能,在实验室环境下进行了番茄尺寸和姿态检测试验。通过游标卡尺测量和深度相机扫描分别获得番茄果实尺寸和姿态的真实值,并与本文方法解析结果进行对比。检测试验结果表明,本文方法获得的番茄横向尺寸和纵向尺寸平均相对误差分别为8.66%和11.08%,番茄果轴与视场投影面的水平夹角和垂直偏转角平均相对误差分别为10.03%和14.02%。本文方法解析的番茄果实尺寸与姿态信息,可应用于番茄果实抓取过程中的姿态调控,从而提高番茄果实抓取采摘的可靠性。  相似文献   
5.
振动式采收是一种高效的林果机械化采收形式。在现有的激振形式中,非圆周激励可以使果树产生有效的振动,实现整体采收效果。为进一步提高果实的采收效率,针对非圆周激励中不同类型旋轮线轨迹进行深入研究。通过SolidWorks、ANSYS、ADAMS等软件建立果树柔性体模型。将不同轨迹参数的旋轮线位移载荷导入ADAMS,施加于果树模型激振点。比较不同轨迹的旋轮线位移载荷下果树模型的振动响应,确定3支线1号外旋轮线轨迹E为最优激振轨迹。根据最优激振轨迹,设计了由平面5R并联机构驱动的二自由度树冠振动装置。以油茶树为激振对象,确定频率6 Hz、振幅90 mm为激振参数,设计并搭建样机进行试验。试验结果表明,7×7交错分布的激振杆布局方式的激振效果最优,该布局下树冠平均合成加速度响应为22.38 m/s2,激振加速度传递效率为77.63%,验证了二维激振轨迹的有效性。  相似文献   
6.
基于机器视觉的幼苗自动嫁接参数提取   总被引:4,自引:2,他引:2  
为提高果蔬嫁接机器人的自动化水平,该文提出一种基于机器视觉用椭圆拟合的方法恢复幼苗叶面并提取用于机器人自动嫁接的参数的方法。俯视采集幼苗图像,提取叶面轮廓并根据轮廓上的拐点对组合相同叶面上的轮廓弧段。应用椭圆拟合的方法参数化叶面形状,提取幼苗的叶面参数,包括生长方向、生长点和叶面面积。再由生长点准确定位培育幼苗的穴孔位置,从而为砧穗配对和取苗定位提供依据。试验结果表明提出的算法能够克服叶面相互遮挡的问题,幼苗识别且定位的成功率达到97.5%,能满足嫁接机器人自动作业的要求。  相似文献   
7.
为提高穴盘苗品种识别准确率,确保全自动穴盘苗移栽的实施,设计基于专家系统的识别算法。首先对采集穴盘苗图像进行K均值聚类算法图像分割、二值化和形态图像处理,获得0.6L-0.4(R+B+G)/3、0.3b-0.7a、H+0.2S、0.3L-0.7a等4个颜色特征值向量和长宽比、椭圆扁率、矩形度、傅里叶描述子等4个形状特征向量。然后对图像特征进行语义转换,构建穴盘苗知识模型,并设计苗的知识库及推理机,推理采用了不确定推理算法及学习算法。系统采集了120盘10个品种的穴盘苗,采用专家系统识别试验,成功率达到了98.3%,而相同样本采用支持向量机(support vector machine,简称SVM)的识别率是84.0%,采用粒子群优化支持向量机(particle-swarm optimization SVM,简称PSOSVM)的识别率是86.3%,采用反向传递(back propagation,简称BP)神经网络的识别率是62.0%,证明基于专家系统的识别方法可以满足自动移栽作业要求。  相似文献   
8.
三维激振果品采收机构优化设计与试验   总被引:7,自引:7,他引:0  
振动式采收因其能够快速有效地使果品脱落而成为目前常用的果品采收机构,但其采收效率仍然不高.本文提出通过三维激振载荷对果树同时施加沿树枝径向和轴向的激振作用,利用ANSYS建立果树模型,分析比较了一维、二维和三维激振载荷下果树上各点的加速度响应.根据三维激振位移载荷的生成方法及其果树动力学仿真结果,设计了三维激振采收机构,并基于遗传算法对该机构尺寸进行优化,以达到最大的输出加速度目标.最后加工了三维激振果品采收机构样机,并开展田间果树加速度响应试验,结果显示三维激振果品采收机构与偏心振动电机对果树激振的平均加速度变异系数分别为0.67和0.72,表明用三维激振采收方式能使果树各分支加速度分布更均匀,从而减少逐个树枝激振的次数,提高采收效率.  相似文献   
9.
基于电子果实技术的机械振动采收过程果实运动分析   总被引:3,自引:3,他引:0  
为改善现有收获设备的采收性能,降低伤果率,提高采摘率,必须对果实采收设备引起的果实运动情况进行准确评估,以确定导致果实损伤的主要阶段和关键因素.该文建立和分析了果实—树体的动力学模型,通过试验和计算验证了果实脱落的理论条件是果实所受法向惯性力要大于果柄与果实间的结合力,并设计了一种扁球型电子果实(orange impact recording sensor,OIRS),利用它检测记录三维激振采收系统在收获砂糖桔时所产生的机械冲击,对该系统引起的果实运动进行分析.在野外振动采收试验记录的数据中,电子果实记录到振动阶段的最大机械冲击加速度均值为217g,平均冲击加速度达到123g;而下落阶段的最大机械冲击加速度均值为155g,平均冲击加速度仅为76g.结果表明:在振动阶段果实损伤的可能性更高,可通过调整采收机的工作参数,降低潜在的伤果风险;而下落阶段果实与地面接触时产生的较高冲击也会导致果实损伤,收获设备表面可铺设缓冲减震材料,以此降低果实的坠落损伤.研究结果表明利用电子果实能够有效检测三维激振采收系统在果实收获过程中所产生的机械冲击,用于机器系统的伤果评估.  相似文献   
10.
研制新一代履带式名优茶采摘机器人并以其为试验对象,在田间进行龙井茶采摘试验,对其检测、定位、末端采摘的精度以及各环节耗时进行试验评估。结果表明,所研制的名优茶采摘机器人检测成功率为88.54%,定位成功率为84.07%,末端采摘成功率为87.22%,整机采摘成功率为61.30%,所采茶叶可满足中端龙井茶要求。单芽采摘时间约1.51 s,1 h可采摘2 000多个,基本实现一台机器替代一个工人的采摘效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号