首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   4篇
  3篇
综合类   7篇
农作物   1篇
畜牧兽医   9篇
园艺   1篇
植物保护   1篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1980年   1篇
  1975年   1篇
  1954年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
OBJECTIVE: To determine the effect of osteotomy angle, reduction technique, and tibial plateau rotation angle on angular and rotational limb deformities. STUDY DESIGN: Geometric comparison using bone models. METHODS: Rotational osteotomies were made in the proximal metaphysis of artificial tibias at 0 degrees, 10 degrees, 20 degrees, -10 degrees, and -20 degrees from perpendicular with respect to either the proximodistal and craniocaudal tibial axes. Negative-numbered angles represented osteotomies made from distal to proximal or caudal to cranial. Changes in tibial angulation and torsion were measured using a 3-dimensional digitizing instrument at tibial plateau rotation angles from 0 degrees to 30 degrees at 5 degrees increments. Two osteotomy reduction techniques were used: complete osteotomy reduction and alignment of the medial cortex. The mean of 5 measurements of torsional and angular tibial deformity for each of the 9 osteotomy orientations in each reduction technique group was obtained. RESULTS: All had increasing angular and rotational deformity as tibial plateau rotation angle increased. In the medially aligned cortex group, all tibias had valgus deformity, and 8 of 9 tibias were internally rotated. In the reduced osteotomy group, minimal angular deformity was seen in tibias with osteotomy variation along the proximodistal axis; however, tibias with osteotomy variation along the craniocaudal axis had angular deformity ranging from 6.0 degrees of varus deformity to 14.3 degrees of valgus deformity. Rotational deformity was affected similarly by osteotomy variation along either axis. Reduction technique had greater affect on angular and rotational deformity than osteotomy angle variation. CLINICAL RELEVANCE: These results suggest that osteotomy reduction may play a greater role in angular and rotational deformity than osteotomy angle, although extreme osteotomy angles should be avoided. To decrease the severity of deformity, we recommend that the osteotomy be made perpendicular to the craniocaudal and proximodistal axes and be completely reduced with less regard for alignment of the medial cortex.  相似文献   
2.
Inhibitors of cyclin‐dependent kinases, as roscovitine, have been used to prevent the spontaneous resumption of meiosis in vitro and to improve the oocyte developmental competence. In this study, the interference of oil overlay on the reversible arrest capacity of roscovitine in sheep oocytes as well as its effects on cumulus expansion was evaluated. For this, cumulus‐oocyte complexes (COCs) were cultured for 20 h in TCM 199 with 10% foetal bovine serum (Control) containing 75 μm roscovitine (Rosco). Subsequently, they were in vitro matured (IVM) for further 18 h in inhibitor‐free medium with LH and FSH. The culture was performed in Petri dishes under mineral oil (+) or in 96 well plates without oil overlay (?) at 38.5°C and 5% CO2. At 20 and 38 h, the cumulus expansion and nuclear maturation were evaluated under stereomicroscope and by Hoechst 33342 staining, respectively. No group presented cumulus expansion at 20 h. After additional culture with gonadotrophins, a significant rate of COCs from both Control groups (+/?) exhibited total expansion while in both Rosco groups (+/?) the partial expansion prevailed. Among the oocytes treated with roscovitine, 65.2% were kept at GV in the absence of oil overlay while 40.6% of them reached MII under oil cover (p < 0.05). This meiotic arrest was reversible, and proper meiosis progression also occurred in the Control groups (+/?). So, the culture system without oil overlay improved the meiotic inhibition promoted by roscovitine without affecting the cumulus expansion rate or the subsequent meiosis progression.  相似文献   
3.
4.
5.
Using within-weather-group air pollution prediction models developed in Part I of this research, this study estimates future air pollution levels for a variety of pollutants (specifically, carbon monoxide – CO, nitrogen dioxide – NO2, ozone – O3, sulphur dioxide – SO2, and suspended particles – SP) under future climate scenarios for four cities in south-central Canada. A statistical downscaling method was used to downscale five general circulation model (GCM) scenarios to selected weather stations. Downscaled GCM scenarios were used to compare respective characteristics of the weather groups developed in Part I; discriminant function analysis was used to allocate future days from two windows of time (2040–2059 and 2070–2089) into one of four weather groups. In Part I, the four weather groups were characterised as hot, cold, air pollution-related, and other (defined as relatively good air quality and comfortable weather conditions). In estimating future daily air pollution concentrations, three future pollutant emission scenarios were considered: Scenario I – emissions decreasing 20% by 2050, Scenario II – future emissions remaining at the same level as at the end of the twentieth century, and Scenario III – emissions increasing 20% by 2050. The results showed that, due to increased temperatures, the average annual number of days with high O3 levels in the four selected cities could increase by more than 40–100% by the 2050s and 70–200% by the 2080s (from the current areal average of 8 days) under the three pollutant emission scenarios. The corresponding number of low O3 days could decrease by 4–10% and 5–15% (from the current areal average of 312 days). For the rest of the pollutants, future air pollution levels will depend on future pollutant emission levels. Under emission Scenarios II and III, the average annual number of high pollution days could increase 20–40% and 80–180%, respectively, by the middle and late part of this century. In contrast, under Scenario I, the average annual number of high pollution days could decrease by 10–65%.  相似文献   
6.
The effects of tolazoline (4.0 mg/kg iv) antagonism of detomidine (0.02 mg/kg iv) were evaluated in isoflurane-anaesthetised, ventilated ponies. Each of 6 ponies received both tolazoline and saline treatment during separate anaesthetic episodes only (no surgery was performed). Detomidine administration produced an increase in blood pressure, decrease in heart rate and decrease in PaO2 Tolazoline treatment transiently increased heart rate while blood pressure returned to baseline after both treatments. Arterial oxygenation decreased further after tolazoline treatment while oxgenation recovered towards baseline with saline treatment. No other cardiopulmonary effects were detected. Recovery from anaesthesia tended to be more rapid when detomidine was antagonized. The potential benefit of antagonizing detomidine-induced bradycardia with tolazoline, during isoflurane anaesthesia should be weighed against the potential to produce a decrease in arterial oxygenation. The mechanism for this effect is not clear.  相似文献   
7.
The aim of the present research is to study the effect of pH values on the sperm rheotaxis properties. Semen collected from bulls was diluted with SOF medium (1:10). pH of the medium was adjusted using a digital pH meter to the following pH values: 6.0, 6.2, 6.4, 6.4, 6.8, 7.0. All kinetic parameters of sperm (n = 3,385) were determined through a computer‐assisted sperm analysis (CASA) system using microfluidic devices with controlled flow velocity. The following parameters were determined: total motility (TM%), positive rheotaxis (PR%), straightline velocity (VSL, μm/s), average path velocity (VAP, μm/s), linearity (LIN, as VSL/VCL, %), beat cross‐frequency (BCF, Hz) and curvilinear velocity (VCL, μm/s). Nitric oxide, calcium and potassium were estimated in semen at different pH values. To confirm the effect of nitric oxide and K+, we used sodium nitroprusside (an NO donor) and KCL as (a K+ donor) to see their effect on sperm PR%. The results showed no difference in TM% at pH (6–7). The PR% was the lowest at pH 6 and 7. The best parameters for the PR% were at pH 6.4–6.6. The concentration of Ca+2 did not change at different pH values. The mean NO values decreased with the increase of pH; however, the mean values of K+ increased with the increase of pH. Addition of high concentration of NO and K+ to the semen media at fixed pH level had a negative effect on TM% and PR%. In conclusion, the bull sperm had the best rheotaxis properties at pH 6.4–6.6 and sensitive to the change of seminal NO and K+.  相似文献   
8.

Background  

Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project . Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available.  相似文献   
9.
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance-the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.  相似文献   
10.
Soil organic matter (SOM) is a complex heterogeneous mixture formed through decomposition and organo-mineral interactions, and characterization of its composition and biogeochemical stability is challenging. From this perspective, Rock-Eval® is a rapid and efficient thermal analytical method that combines the quantitative and qualitative information of SOM, including several parameters related to thermal stability. This approach has already been used to monitor changes in organic matter (OM) properties at the landscape, cropland, and soil profile scales. This study was aimed to assess the stability of SOM pools by characterizing the grain size fractions from forest litters and topsoils using Rock-Eval® thermal analysis. Litter (organic) and topsoil samples were collected from a beech forest in Normandy (France), whose management in the last 200 years has been documented. Fractionation by wet sieving was used to separate large debris (> 2 000 μm) and coarse (200-2 000 μm) and fine particulate OM (POM) (50-200 μm) in the organic samples as well as coarse (200-2 000 μm), medium (50-200 μm), and fine (< 50 μm) fractions of the topsoil samples. Rock-Eval® was able to provide thermal parameters sensitive enough to study fine-scale soil processes. In the organic layers, quantitative and qualitative changes were explained by the progressive decomposition of labile organic compounds from plant debris to the finest organic particles. Meanwhile, the grain size fractions of topsoils presented different characteristics. The coarse organo-mineral fractions showed higher C contents, albeit with a different composition, higher thermal stability, and greater decomposition degree than the plant debris forming the organic layer. These results are consistent with those of previous studies that microbial activity is more effective in this fraction. The finest fractions of topsoils showed low C contents, the highest thermal stability, and low decomposition degree, which can be explained by the stronger interactions with the mineral matrix. Therefore, it is suggested that the dynamics of OM in the different size fractions be interpreted in the light of a plant-microbe-soil continuum. Finally, three distinct thermostable C pools were highlighted through the grain size heterogeneity of SOM:free coarse OM (large debris and coarse and fine particles), weakly protected OM in (bio)aggregates (coarse fraction of topsoil), and stabilized OM in the fine fractions of topsoil, which resulted from the interactions within organo-mineral complexes. Therefore, Rock-Eval® thermal parameters can be used to empirically illustrate the conceptual models emphasizing the roles of drivers played by the gradual decomposition and protection of the most thermally labile organic constituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号