首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   16篇
林业   2篇
  36篇
综合类   21篇
畜牧兽医   55篇
园艺   1篇
植物保护   13篇
  2023年   1篇
  2020年   1篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   15篇
  2012年   4篇
  2011年   1篇
  2010年   6篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   12篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
1.
2.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   
3.
4.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   
5.
The possibility that Alzheimer's disease (AD) is caused by overexpression or duplication of one or more genes on chromosome 21 has been raised by the observation of AD-like neuropathologic changes in individuals with Down syndrome and by the mapping of both the defect for familial AD and the amyloid beta protein gene to this autosome. Possible duplication on chromosome 21 was investigated in both familial and sporadic AD by means of restriction fragment length polymorphisms for the amyloid and SODI loci, as well as for DNA markers in the vicinity of the familial AD defect and in the critical Down syndrome region of chromosome 21. No evidence of increased DNA dosage was observed in either brain or leukocytes of patients with inherited or sporadic forms of AD. Duplication of these regions is therefore not a frequent event in either form of AD. Furthermore, no significant allelic association was detected between AD and any of the loci, including the amyloid and SODI genes, providing no support for the hypothesis that defects in these specific genes are the primary cause of AD.  相似文献   
6.
Amyloid deposition in senile plaques and the cerebral vasculature is a marker of Alzheimer's disease. Whether amyloid itself contributes to the neurodegenerative process or is simply a by-product of that process is unknown. Pheochromocytoma (PC12) and fibroblast (NIH 3T3) cell lines were transfected with portions of the gene for the human amyloid precursor protein. Stable PC12 cell transfectants expressing a specific amyloid-containing fragment of the precursor protein gradually degenerated when induced to differentiate into neuronal cells with nerve growth factor. Conditioned medium from these cells was toxic to neurons in primary hippocampal cultures, and the toxic agent could be removed by immunoabsorption with an antibody directed against the amyloid polypeptide. Thus, a peptide derived from the amyloid precursor may be neurotoxic.  相似文献   
7.
Field experiments were carried out to study the effects of different soil management practices on the water balance, precipitation use efficiency (PUE), and crop yield (i.e. winter wheat and peanut) on a loess soil near Luoyang (east edge of the Chinese Loess Plateau, Henan Province, China). Field plots were set up in 1999 including following soil management practices: subsoiling with mulch (SS), no-till with mulch (NT), reduced tillage (RT), two crops per year (i.e. winter wheat and peanut, TC), and a conventional tillage control (CT). The field plots were equipped to monitor all components of the soil–water balance except evapotranspiration, which was computed by solving the water balance equation. The results showed that although soil management had smaller influence on the magnitude of the water balance components than did precipitation variations, small influences of the applied soil management practices on water conservation during the fallow period can greatly affect winter wheat yield. SS increased consistently precipitation storage efficiency (PSE) and PUE over the 5 years compared to CT except during the wettest year. NT also had a noticeable effect on postharvest water storage during the fallow period; however, the influence on yield of NT depended on the amount of precipitation. TC lowered the winter wheat yield mainly due to the unfavorable soil moisture conditions after growing peanut in summer; however, the harvested peanut gained an extra profit for the local farmer. No matter which kind of soil management practices was adapted, PSE never exceeded 41.6%, which was primarily attributed to high evapotranspiration. From data of five consecutive agricultural years between 2000 and 2005, it could be concluded that SS resulted in the highest PSE, PUE and crop yield. TC also showed promising results considering the economic value of the second crop. NT performed slightly less as SS. CT gave intermediate results, whereas RT was the worst alternative.  相似文献   
8.
The aim of this laboratory study was to investigate the effect of straw and vinasses on the nitrogen (N) mineralization-immobilization turnover of celery residues during two periods (each simulating a time period from autumn till spring) under laboratory conditions. During the first period (1-198 d), 15N-labelled celery residues (1.1 g dry matter (DM) kg−1 soil) were incubated together with straw (8.1 g DM kg−1 soil), aiming to immobilize the N released from celery residues, followed by an incorporation of vinasses (1.9 g DM kg−1 soil) after 84 d, with a view to remineralizing the immobilized celery-N. During the second period (198-380 d), the experimental set-up was repeated, except that non-labelled celery residues were used. Total N, mineral N and their 15N enrichments as well as microbial biomass N were determined at regular time intervals. During both periods, mixing celery residues with straw significantly increased microbial biomass N (90.5 and 40.5 mg N kg−1 extra compared to celery only treatment) and decreased the amount of mineral N (reduction of 56.1 and 45.9 mg N kg−1 soil compared to celery only treatment) and the celery-derived mineral 15N (0% of mineral celery-derived 15N in straw treatment compared to 35% of mineral celery-derived 15N in celery only treatment). After maximum immobilization, a natural remineralization (without addition of vinasses) of 32.2 (at day 198) and 11.1 mg N kg−1 soil (at day 380) occurred in the straw treatment, but the mineral N content remained significantly lower than in the celery only treatment during the complete experiment, and the amount of remineralized celery-15N was very low (5.4% of celery-derived 15N after 380 d). Vinasses caused no real priming effect, although it did slightly increase the amount of remineralized celery-15N (+6.4% of celery-derived 15N at day 380 compared to the straw treatment), probably due an apparent added N interaction caused by displacement reactions with the soil microbial biomass.  相似文献   
9.
10.
Epizootic ulcerative syndrome was diagnosed, and the presence of Aphanomyces invadans confirmed, from an outbreak of clinical disease in wild‐caught bony bream (Nematalosa erebi) from the Darling River near Bourke, in New South Wales, Australia, during 2008. This confirms a significant extension of the agent beyond its historical range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号