首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
综合类   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Moharana  P. C.  Jena  R. K.  Pradhan  U. K.  Nogiya  M.  Tailor  B. L.  Singh  R. S.  Singh  S. K. 《Precision Agriculture》2020,21(2):426-448
Precision Agriculture - Delineation of management zones (MZs) are needed to manage fields in order to maximize economic return, minimize environmental impact, and improve soil and crop management....  相似文献   
2.
Iron deficiency is a serious nutritional disorder in aerobic rice, causing chlorosis, poor yields and reduced grain nutritional quality. The problem can be managed by complementing the use of Fe-efficient plant type with a suitable Fe management strategy. In the present paper, we report the effect of eight iron management practices to resolve the problem of iron (Fe) chlorosis through the use of an iron deficiency tolerant (IDTR) and iron deficiency susceptible (IDSR) rice genotype, i.e. Pusa 33 and ADT 39, respectively. Fe deficiency tolerance of these genotypes was related to the root release of PS which enabled a higher uptake of Fe in the IDTR than the IDSR under Fe deficiency. In general, IDTR performed better than the IDSR as evident from a significant increase in total iron, active iron, chlorophyll content and grain and straw yield. IDSR produced the highest grain and straw yield under slow iron release nano clay complex source. Grain Fe content of the IDTR and IDSR increased by 18.9 and 13.4%, respectively, under recommended dose of Fe. The results identified the most effective soil management strategies for the alleviating Fe deficiency chlorosis and improving Fe nutrition of both IDTR and IDSR genotypes.  相似文献   
3.
Micronutrient deficiency in cultivable soil, particularly that of iron (Fe) and zinc (Zn), is a major productivity constraint in the world. Low Fe availability due to the low solubility of the oxidized ferric forms is a challenge. An experiment was, thus, executed to assess the performance of eight genetically diverse rice genotypes on Fe-sufficient (100 µM) and Fe-deficient (1 µM) nutrient solution, and their ability to recover from Fe deficiency was measured. Fe efficiency under Fe deficiency in terms of biomass production showed a significant positive correlation with the root release of phytosiderophore (PS) (R2 = 0.62*). This study shows that the Fe deficiency tolerance of Pusa 33 was related to both a high release of PS by the root and an efficient translocation of Fe from the root to the shoot as the Fe–PS complex, which could be useful for improving the Fe nutrition of rice particularly under aerobic conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号