首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  3篇
综合类   2篇
畜牧兽医   1篇
  2016年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Soil biological response to management is best evaluated in field-scale experiments within the context of the soil environment and crop; however, cost-effective methods are lacking to relate these data which span multiple spatial scales. We hypothesized that zones of apparent electrical conductivity (ECa) could be used to integrate soil properties (sampling-site scale), microbial-scale measures of vesicular-arbuscular mycorrhizal (VAM) fungi, and field-scale wheat yields from yield maps. An on-farm dryland experiment (250 ha) was established wherein two (32-ha) fields were assigned to each phase of a winter wheat (Triticum aestivum L.) – corn (Zea mays L.) – proso millet (Panicum miliaceum L.) – fallow rotation. Each field was mapped and classified into four zones (ranges) of ECa. Soil samples were collected from geo-referenced sites within ECa zones and analyzed for multiple soil properties associated with productivity (0–7.5 and/or 0–30 cm). Additionally, VAM fungi were assessed using C16:1(cis)11 fatty acid methyl ester biomarker (C16vam), glomalin immunoassay, and wet-aggregate stability (WAS) techniques (1–2mm aggregates from 0- to 7.5-cm soil samples). Concentrations of C16vam and WAS increased among cropping treatments as: fallow < wheat < corn < millet. Glomalin across crops and replicates, C16vam and WAS in fallow (crop effect removed), soil properties associated with productivity, and wheat yields were negatively correlated with ECa and different among ECa zones (P 0.05). Zones of ECa provide a point of reference for relating data collected at different scales. Monitoring cropping system parameters and profitability, over time, may allow linkage of microbial-scale processes to farm-scale economic and ecological outcomes.  相似文献   
2.
3.
The extreme climate of the northern Great Plains of North America requires cropping systems to possess a resilient soil resource in order to be sustainable. This paper summarizes the interactive effects of tillage, crop sequence, and cropping intensity on soil quality indicators for two long-term cropping system experiments in the northern Great Plains. The experiments, located in central North Dakota, were established in 1984 and 1993 on a Wilton silt loam (FAO: Calcic Siltic Chernozem; USDA1: fine-silty, mixed, superactive frigid Pachic Haplustoll). Soil physical, chemical, and biological properties considered as indicators of soil quality were evaluated in spring 2001 in both experiments at depths of 0–7.5, 7.5–15, and 15–30 cm. Management effects on soil properties were largely limited to the surface 7.5 cm in both experiments. For the experiment established in 1984, differences in soil condition between a continuous crop, no-till system and a crop–fallow, conventional tillage system were substantial. Within the surface 7.5 cm, the continuous crop, no-till system possessed significantly more soil organic C (by 7.28 Mg ha−1), particulate organic matter C (POM-C) (by 4.98 Mg ha−1), potentially mineralizable N (PMN) (by 32.4 kg ha−1), and microbial biomass C (by 586 kg ha−1), as well as greater aggregate stability (by 33.4%) and faster infiltration rates (by 55.6 cm h−1) relative to the crop–fallow, conventional tillage system. Thus, soil from the continuous crop, no-till system was improved with respect to its ability to provide a source for plant nutrients, withstand erosion, and facilitate water transfer. Soil properties were affected less by management practices in the experiment established in 1993, although organic matter related properties tended to be greater under continuous cropping or minimum tillage than crop sequences with fallow or no-till. In particular, PMN and microbial biomass C were greatest in continuous spring wheat (with residue removed) (22.5 kg ha−1 for PMN; 792 kg ha−1 for microbial biomass C) as compared with sequences with fallow (SW–S–F and SW–F) (Average=15.9 kg ha−1 for PMN; 577 kg ha−1 for microbial biomass C). Results from both experiments confirm that farmers in the northern Great Plains of North America can improve soil quality and agricultural sustainability by adopting production systems that employ intensive cropping practices with reduced tillage management.  相似文献   
4.
Formation of ridges during row cultivation creates microsites that could enhance spatial heterogeneity of soil properties, such as organic C, and thereby influence soil microbial communities. A study was conducted during 2003 near Shelton, NE, on a corn (Zea mays L.) field mapped using apparent electrical conductivity (ECa). New ridges were built each year with a row cultivator when corn reached the V3–V4 growth stage. Cultivation increased labile C fractions and soil microbial biomass in the row position for all ECa classes. Canonical discrimination analysis showed no clear differences in relative abundance of specific microbial groups among ECa classes or between row and furrow position, except for enhanced mycorrhizal biomass in the row. Microbial biomass responded strongly to changes in C redistribution, but was not accompanied by a significant change in the abundance of specific microbial groups. Labile C fractions (coarse and fine particulate organic matter) and crop residues in diverse stages of decomposition are associated with diverse microbial groups. Thus, row cultivation for weed control creates a biologically enhanced root zone that may improve early season performance of corn.  相似文献   
5.
Arbuscular mycorrhizal (AM) fungi are recognized for their positive effects on plant growth, playing an important role in plant P nutrition. We used C16:1cis11 and C18:1cis11 fatty acid methyl ester (FAME) biomarkers to monitor the dynamics of AM fungi during the reproductive stages of maize (Zea mays L.) grown at high yield in Nebraska, USA. Two fields with four different levels of P availability were sampled throughout the reproductive stages. Chambers, made of PVC enclosed mesh fabric to allow passage of roots and hyphae (+R) or hyphae alone (-R) and amended with either KH2PO4(+P) or distilled water (-P), were installed in the field at tasselling and removed after three, six and nine weeks. Our objectives were (i) to provide evidence for C allocation to AM fungi during the reproductive stages of high productivity maize and (ii) to link AM fungal growth dynamics with changes in soil P availability. We observed that initial AM FAME concentration was lower at sites with a high availability of P. During the reproductive growth of maize, AM biomarkers increased inside the chambers and were consistent with the biomarker increase observed in adjacent field soil. This confirms that there is C allocation from the plant to the symbiont during the reproductive stages of maize. We also observed a reduction in available P in +R and -R chambers. This observation implies that hyphae were as efficient as roots and hyphae in reducing the P concentration in chambers. These results demonstrate that AM fungi are active during the reproductive growth stages of maize and may benefit high productivity maize crops by facilitating P uptake.  相似文献   
6.
The aim of this study was to determine the immunomodulatory effects of IL-12, IL-18 and CD154 (CD40 ligand, CD40L) in DNA-vaccination against the classical swine fever virus. Four recombinant plasmids were constructed including the CSFV coding region for the glycoprotein gp55/E2 alone or together with porcine IL-12, IL-18 or CD154 genes. Five groups of four pigs each were immunized intramuscularly (i.m.) three times with the respective constructs. The control group was inoculated with empty plasmid DNA. Eighteen days after the final immunization, the pigs were challenged with a lethal dose of CSFV strain Eystrup and monitored for a further 16 days. This study showed that co-delivery of IL-18 and CD154 induced an earlier appearance of serum antibodies, reduced B-cell deficiency after infection and protected pigs against a lethal CSFV infection. In contrast, co-delivery of IL-12 led to a reduced titer of neutralizing antibodies and protection against a lethal CSFV challenge in comparison to the other pigs and to pigs that were immunized with a gp55/E2 plasmid alone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号