首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   19篇
林业   18篇
农学   10篇
基础科学   4篇
  41篇
综合类   22篇
农作物   38篇
水产渔业   29篇
畜牧兽医   66篇
园艺   11篇
植物保护   38篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   16篇
  2018年   17篇
  2017年   13篇
  2016年   23篇
  2015年   9篇
  2014年   11篇
  2013年   24篇
  2012年   8篇
  2011年   19篇
  2010年   14篇
  2009年   10篇
  2008年   10篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1959年   1篇
  1937年   1篇
  1936年   1篇
  1935年   1篇
  1934年   2篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
1.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
2.
The objective of this study was to evaluate the effects of dietary supplementation with zinc oxide nanoparticles (ZnO‐NPs) on the performance, egg quality, Zn retention, immunity responses, superoxide dismutase activity (SOD), egg malondialdehyde (MDA) content, and serum parameters in laying hens in the late phase of production. A total of 288 laying hens at 64 weeks of age were randomly assigned to 4 treatments with 6 replicates, and 12 birds within each group. Experimental diets included a corn‐soybean meal‐based diet (without Zn supplementation) and a basal diet supplemented with 80 mg/kg of Zn‐oxide, ZnO‐NPs, and Zn‐methionine. The results indicated that egg production and egg mass were significantly higher in the Zn‐methionine and ZnO‐NPs groups (p < .05). Also, eggshell thickness and shell strength increased in the ZnO‐NPs group as compared with the other groups (p < .05). Moreover, Zn supplementation decreased egg loss (p < .05). There were significant differences among treatments in Zn deposition in tibiotarsus, liver, pancreas, eggs, and excreta (p < .01). Antibody titre, heterophil (%(, and phytohemagglutinin (PHA) were significantly higher in birds fed with Zn‐supplemented diets (p < .05). In treatments supplemented with ZnO‐NPs and Zn‐methionine, the SOD activity in the liver, pancreas, and plasma was greater as compared with the other treatments (p < .05). The MDA content in eggs was significantly reduced in groups supplemented with Zn (p < .01). Moreover, dietary Zn supplementation significantly affected serum total protein, albumin, glucose, alkaline phosphatase activity, carbonic anhydrase activity, and Zn level (p < .05). In conclusion, this study demonstrated that dietary supplementation with ZnO‐NPs can improve the performance of laying hens. Therefore, ZnO‐NPs can enhance zinc absorption in the intestine of aged layers and can be a more suitable source of zinc than regular Zn‐oxide in diets.  相似文献   
3.
4.
Emamectin is a macrocyclic lactone insecticide with low toxicity to non-target organisms and the environment, and is considered an important component in pest-management programmes for controlling field crop pests. It is a powerful compound for controlling the cotton bollworm Helicoverpa armigera (Hübner). A spray concentration of 25 mg AI litre-1 in a cotton field resulted in over 90% suppression of H armigera larvae up to day 28 after treatment, while similar mortality of the Egyptian cotton leafworm Spodoptera littoralis Boisduval, under the same conditions, was maintained for 3 days only. Emamectin is a potent compound for controlling the western flower thrips Frankliniella occidentalis (Pergande) under both laboratory and field conditions and its activity on adults was over 10-fold greater than that of abamectin. Spray concentrations of 10 and 50 mg AI litre-1 in Ageratum houstonianum Mill flowers resulted in total suppression of adults up to day 11 and of larvae up to day 20 after treatment. Under standard laboratory conditions, emamectin exhibits a considerable activity on the whitefly Bemisia tabaci (Gennadius) and the leafminer Liriomyza huidobrensis (Blanchard). Further studies are required to evaluate its potential activity on the latter pests under field conditions.  相似文献   
5.
Cavity spot is a major disease of carrots, causing cavities on the surface of the root. Available commercial varieties show a range of susceptibility but no significant resistance. Seed progeny from 46 tissue culture-derived carrot ( Daucus carota ) somaclones were screened for viability, then 19 selected somaclone families were sown under glasshouse conditions, along with commercial cultivars (Bertan, Nandor, Bolero and Vita Longa) as controls. Mature roots were exposed to Pythium violae in a cavity spot bioassay to determine their response as measured by disease incidence and severity. Some somaclones formed fewer lesions than the least susceptible control cultivar, Vita Longa. Seven somaclonal families that showed a range of susceptibility were sown under field conditions and the assessment was repeated. Although there was little relationship between glasshouse and field-trial results, under field conditions one of the somaclones had a mean incidence of disease, as estimated by transformed data, of 1·9 compared with 37·9 for the most susceptible somaclone and 3·5 for Bolero, the most resistant commercial cultivar. The results indicated that significant genetic variation in susceptibility to cavity spot disease was present in the somaclones.  相似文献   
6.
7.
8.
9.
The conversion of forests to agroecosystems or agroforests comes with many changes in biological and chemical processes. Agroforestry, a tree based agroecosystem, has shown promise with respect to enhanced system nutrient accumulation after land conversion as compared to sole cropping systems. Previous research on tropical agroforestry systems has revealed increases in soil organic matter and total organic nitrogen in the short term. However, research is lacking on long-term system level sustainability of nutrient cycles and storage, specifically in traditional multi-strata agroforestry systems, as data on both the scope and duration of nutrient instability are inconclusive and often conflicting. This study, conducted in Ghana, West Africa, focused on carbon and nitrogen dynamics in a twenty-five year chronosequence of cacao (Theobroma cacao Linn.) plantations. Three treatments were selected as on-farm research sites: 2, 15 and 25-year-old plantations. Soil carbon (C, to a depth of 15 cm) varied between treatments (2 years: 22.6 Mg C ha−1; 15 years: 17.6 Mg C ha−1; 25 years: 18.2 Mg C ha−1) with a significant difference between the 2- and 15- and the 2- and 25-year-old treatments (p < 0.05). Total soil nitrogen in the top 15 cm varied between 1.09 and 1.25 Mg N ha−1 but no significant differences were noted between treatments. Soil nitrification rates and litter fall increased significantly with treatment age. However, photosynthetically active radiation (PAR) and soil temperature showed a significant decrease with age. No difference was found between decay rates of litter at each treatment age. By 25 years, system carbon sequestration rates were 3 Mg C ha−1 y−1, although results suggest that even by 15 years, system-level attributes were progressing towards those of a natural system.  相似文献   
10.
Multipurpose trees, the integral components of homegardens, contribute significantly to the closed nutrient cycling processes and sustainability of the ecosystem. Although, the litter production and probable nutrient returns via litter in homegardens have been documented, quantification and characterization of the decomposition and bioelement release from the litter have received relatively little scientific attention. The objective of the present study is to explore the litter dynamics of six locally important multipurpose trees (Mangifera indica L., Artocarpus heterophyllus Lamk., Anacardium occidentale L., Ailanthus triphysa Dennst., Artocarpus hirsutus L. and Swietenia macrophylla L.), in an agroforestry homegarden in Southern Kerala, India. Litterfall and nutrient additions in the six species ranged from 383 to 868 g m−2 yr−1, nitrogen, 6.4 to 8.8, phosphorus, 0.17 to 0.42 and potassium, 1.1 to 2.8 g m−2 yr−1. The annual litter output in the homegarden was 425 kg with A. hirsutus, M. indica, A. heterophyllus and A. occidentale recording significantly higher litter and nutrient additions. Leaf litter decay studies revealed A. heterophyllus and A. occidentale to be the most labile litter species and S. macrophylla the most recalcitrant. The decay rate coefficients varied significantly among the species. Foliage decomposition rates related to the initial chemical composition of the litter revealed best correlation with lignin. NPK release was almost complete by the end of decay in all species inspite of the initial phases of accumulation observed for nitrogen and phosphorus. Two-way analysis of variance test revealed significant differences in the contents of the three elements as a function of species and time elapsed. Macronutrients were released in the order K>N/P. The higher rates of decay and nutrient turnover in M. indica, A. heterophyllus and A. occidentale foliage indicated the potential of using these species’ litter as nutrient inputs in agriculture while A. triphysa, A. hirsutus and S. macrophylla perform better as organic mulches taking a longer time for decay and hence nutrient release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号