首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
农作物   2篇
畜牧兽医   1篇
  2018年   1篇
  2013年   1篇
  1979年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The present work described the development of multifunctional, electrically conductive and durable fabrics by coating of silver and copper particles using a dipping-drying method. The particles were directly grown on fabric structure to form electrically conductive fibers. Particles were found to fill the spaces between the microfibers, and were stacked together to form networks with high electrical conductivity. The electrically conductive fabrics showed low resistance with high stretch ability. The utility of conductive fabrics was analyzed for electromagnetic shielding ability over frequency range of 30 MHz to 1.5 GHz. The EMI shielding was found to increase with increase in concentration of copper and silver particles. Furthermore, the heating performance of the copper and silver coated fabric was studied through measuring the change in temperature at the surface of the fabric while applying a voltage difference across the fabric. The maximum temperature (119°C for silver and 112°C for copper) were obtained when the applied voltage was 10 V. Moreover, the role of deposited particles on antibacterial properties was examined against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. At the end, the durability of coated fabrics was examined against several washing cycles. The fabrics showed good retention of the particles, proved by small loss in the conductivity of the material after washing.  相似文献   
2.
The aim of this study was to model the air permeability of polyester cotton blended woven fabrics. Fabrics of varying construction parameters i.e. yarn linear densities and thread densities were selected and tested for air permeability, fabric areal density and fabric thickness. A total of 135 different fabric constructions were tested among which 117 were allocated for development of prediction model while the remaining were utilized for its validation. Four variables were selected as input parameters on basis of statistical analysis i.e. warp yarn linear density, weft yarn linear density, ends per 25 mm and picks per 25 mm. Response surface regression was applied on the collected data set in order to develop the prediction model of the selected variables. The model showed satisfactory predictability when applied on unseen data and yielded an absolute average error of 5.1 %. The developed model can be effectively used for prediction of air permeability of the woven fabrics.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号