首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1篇
农作物   4篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The effects of traditional nixtamalization and extrusion cooking on total phenolics, ferulic acid, anthocyanins and Oxygen Radical Absorbance Capacity (ORAC) of Mexican pigmented (blue and red) and commercial (white and yellow) maize processed into tortillas were investigated. Tortillas prepared from extruded flours retained between 76.2–93.9% and 58–96.7% of total phenolics and total ferulic acid (TFA) respectively, compared to 50.5–75.7% and 19.6–55.8% assayed in traditional tortillas. Approximately 97–99% of TFA in raw kernels and their tortillas was in its bound form. The retention of TFA in traditional tortillas was significantly lower compared to tortillas from extruded flours. Traditional tortillas contained more free ferulic acid compared to tortillas produced from extruded flours indicating that the first process liberated bound ferulic acid with cell walls more efficiently. Blue maize lost more than 55% of the anthocyanins when processed into extruded or traditional tortillas. Approximately 68–92% of the ORAC associated with raw kernels or their tortillas was due to bound compounds. Traditional and extruded tortillas lost 16.4–52.4% and 6.8–24.8%, respectively, of the total ORAC associated with raw grains. Results clearly indicate that the proposed lime-cooking extrusion strategy was instrumental in retaining higher levels of phytochemicals, particularly ferulic acid, and antioxidants in all tortillas.  相似文献   
2.
Mexico has the largest diversity of genetic resources for maize in the world, with about 59 different landraces. However, little is known about their wet‐milling characteristics. The aim of this study was to determine whether 15 Mexican blue maize (Zea mays L.) genotypes of Elotero de Sinaloa landrace collected in the northwestern region of Mexico have suitable wet‐milling properties. Great variability of physical, compositional, and wet‐milling characteristics among these blue maize genotypes was observed. The FAUAS‐457 and FAUAS‐488 maize genotypes had similar starch yield and starch recovery as reported for the wet‐milling industry, which indicated that they may be useful as a source of extractable starch. Residual protein levels in the starch fractions were in the range of 0.39–0.68%, and total solids recovery exhibited a mean value of 98.8%, indicating acceptable efficacy of the wet‐milling process. This process afforded starches from blue maize genotypes with low protein contents. Wet‐milling fractions correlated with the physical and chemical properties of the kernels. Our results indicate that Mexican blue maize genotypes contain characteristics that make them appropriate and utilizable at the industrial level, and they can also be valuable for improving wet‐milling characteristics of maize through breeding programs.  相似文献   
3.
The lime-cooking extrusion represents an alternative technology for manufacturing pre-gelatinized flours for tortillas with the advantages of saving energy and generation of null effluents. The phytochemical profiles (total phenolics, anthocyanins) and antioxidant activity of four different types of whole pigmented Mexican maize [white (WM), yellow (YM), red (RM), blue maize (BM)] processed into tortillas were studied. The lime-cooking extrusion process caused a significant decrease (p?相似文献   
4.
Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6–83.5%, 74.1–77.6% and 79.8–80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8–49.8%, 41.3–42.3% and 43.7–44.4% assayed in traditional tortillas, respectively. Approximately 72.5–88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.  相似文献   
5.
The potential use of quality protein transgenic maize (genetically modified maize with the cDNA of amarantin) for preparation of flour and tortillas through an extrusion lime cooking process was investigated. Tortillas from extruded transgenic maize flour had similar physicochemical and sensory properties than those from the commercial brand MASECA™; however, the former had the highest (P < 0.05) protein content (12.91 vs 8.93%, db), essential amino acids content, calculated protein efficiency ratio (C-PER; 2.27 vs 0.90) and protein digestibility corrected amino acid score (PDCAAS; 55.54 vs 30.18%) and therefore they were nutritionally better. The use of transgenic maize for flour and tortilla preparation through an extrusion lime cooking process may have a positive impact on the nutritional status of people from countries where maize is the basic staple food. It also represents an alternative process to nixtamalization that requires little energy and water, it does not generate wastewater, and all components of the maize kernel are retained.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号