首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
林业   1篇
  1篇
农作物   1篇
  2013年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A series of experiments was carried out in 2012–2014 in Pailin province, Cambodia, to determine the potential and agronomic requirements for a dry season sunflower crop. The research showed that the six high-oleic sunflower hybrids evaluated were similar for phenological development and yield but two varieties had <50% emergence and poor hybrid seed quality was seen as a constraint to planting under rainfed conditions. Sunflower receiving a basal application of 20:20:15 (N:P2O5:K2O) at 200 kg ha?1 produced achene yield of 2423 kg?1, while side-dressing with urea had no effect on yield. Application of s-metolachlor post-sowing pre-emergence was the most effective weed control treatment and significantly increased sunflower achene yield. Post-emergence weed control was not adequate to prevent yield loss from weed competition. The study showed that sunflower can be grown successfully as a dry season crop in North-West Cambodia when planted no-tillage on residual soil water remaining after maize harvest in October and November. The critical requirements for success are related to preservation and effective use of residual soil water and include minimal soil disturbance, adequate application of fertiliser at sowing, and pre-emergence control of weeds, especially grasses.  相似文献   
2.
We investigated soil physical properties in three forest types in tropical lowland monsoon forests in central Cambodia under the same climatic conditions, i.e., Kanhaplic Haplustults in dry evergreen forest (KH-E), Arenic Haplustults in dry deciduous forest (AH-D), and Arenic Ultic Alorthods in mixed evergreen–deciduous forest (AA-M), to clarify the relationship between forest types and soil physical properties. The clay content was correlated with water content at ψ = −9.8 and −1500 kPa (WC10 and WC1500), available water capacity (AWC), and the van Genuchten (vG) parameter N (P < 0.01). vG parameter N was in the order AH-D > AA-M > KH-E whereas vG parameter α had a high value in KH-E soil at 0–100 cm in depth. The cumulative AWC (AWCcl, mm) at a soil depth of 0–200 cm was higher in the AH-D than in the KH-E, and was not considered a major factor affecting the distribution of different forest types under the same climatic conditions. The unsaturated hydraulic conductivity (K) at 0–100 cm in depth, estimated by use of models, was higher in AH-D than in KH-E mostly at matric potential ψ > −10 kPa. The low K in KH-E at ψ > −10 kPa was considered favorable for evergreen trees to retain the soil water for the transpiration in the dry season, and the matric potential in KH-E showed more gentle decreases in the early dry seasons than AH-D. Thus the differences in K among generally sandy soil types could possibly affect the establishment of different forest types in the study area with the same climate.  相似文献   
3.
This study of a water cycle was conducted in an evergreen forest located in the Mekong River Basin in central Cambodia. At the observation site, we measured the dynamics of the spatial distribution of groundwater levels. The groundwater movement was analyzed two-dimensionally using boundary conditions and parameters that had been observed in the field. The climate in the research area is dominated by two seasons, which occur annually: a rainy and a dry season. The groundwater levels are generally high during the rainy season and low during the dry season. Groundwater levels were measured along a stream, which flowed through the study site. The streambed was visible at the head of the stream in January. At the next downriver well point, the streambed appeared in March. Finally, it became visible at all well points in April, meaning that surface runoff had disappeared temporarily and instead flowed underground during the ensuing dry period. Groundwater levels of the studied lateral flow perpendicular to the stream that seeped and infiltrated into the stream were 1.2–2.5 m deep (in April), which was the lowest level recorded for the year. During that period, the depth of the groundwater of the studied lateral flow fell by as much as 56 mm per month. In addition, the lateral flow groundwater infiltrated into groundwater of the stream during that period. The groundwater level fluctuation was estimated based on a two-dimensional analysis of lateral flow perpendicular to the stream using a numerical simulation model with soil physical parameters and observed boundary conditions. The observations of ground water fluctuations were well reproduced. Deep seepage of groundwater was estimated using a uniform boundary condition that allowed efflux through the bottom, estimated as being approximately 30 mm per year. The simulated deep seepage rate was considered plausible considering other hydrological components such as soil water storage fluctuation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号