首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
林业   3篇
农学   3篇
基础科学   1篇
  17篇
综合类   6篇
农作物   3篇
水产渔业   6篇
畜牧兽医   4篇
园艺   1篇
植物保护   4篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有48条查询结果,搜索用时 140 毫秒
1.
A series of substituted 4-methylcoumarins was synthesised and the members tested for their toxicity towards mycelial growth of seven phytopathogenic fungi in culture. Rhizoctonia solani, Alternaria alternata and Fusarium solani exhibited maximum sensitivity to these compounds whereas Pythium aphanidermatum, Colletotrichum falcatum, Drechslera oryzae and Macrophomina phaseolina were relatively less sensitive. 6-Ethyl-3-n- propyl-7-hydroxy4-methylcoumarin ( I ) was relatively toxic towards all fungi except C. falcatum, P. aphanidermatum and M. phaseolina. The 6-n-butyl ( III ) and 6-(1, 1, 3, 3-tetramethylbutyl) ( VI ) derivatives were highly toxic to R. solani with EC50, values of lμg ml?1.  相似文献   
2.
A series of 2-alkyl-7, 8-dihydro-3-hydroxynaphtho[1,2-c]chromen-6-ones was synthesised by the condensation of ethyl 3, 4-dihydro-1-oxonaphthalene-2-carboxylate with substituted phenols in the presence of POCl3. The compounds were characterised and tested for their toxicity towards the mycelial growth of seven phytopathogenic fungi in culture. Drechslera oryzae, Rhizoctonia solani and Colletotrichum falcatum exhibited maximum sensitivity to these compounds whereas Macro-phomina phaseolina, Fusarium solani, Alternaria alternata and Pythium aphanidermatum were less sensitive. 2-Ethyl-7, 8-dihydro-3-hydroxy-naphtho[1,2-c]chromen-6-ones possessed greatest toxicity with EC50 values ranging from 0.2 to 2.5 μg ml?1 against all fungi except A. alternata and P. aphanidermatum.  相似文献   
3.
Highly aligned ultrafine fibers of Poly (amide-co-imide) PAI (torlon)/Poly (trimellitic anhydride chloride-co-4, 4′-methylene dianiline) (PTACM) blends have been prepared by using mechano-electrospinning. Employing a mixed solvent system of DMSO and THF alongwith water coagulation bath as a medium, continuous fibers with improved mechanical properties have been obtained. The continuity of the fibers is strongly dependent on the solvent mixing ratio of DMSO and THF (6:4). Continuous fibers with the most uniform diameter are obtained when a 30 % of PAI and PTACM (1:1) resins by weight is used in the blending solution. The aligned fibers are further coated with silver nanoparticles using a one-step process by passing the electrospunned fibers through PEG solution and a silver precursor solution followed by reduction in a continuous process. The advantage of our method lies in a uniform silver coating on a single fiber that can be coated continuously on a larger length scale (~Km). The mechanical properties of these fibers are dramatically improved after their alignment. Better electrical conductivity is obtained for these fibers after they are coated with silver nanoparticles. The highly aligned silver decorated fibers utilizes a novel electroless continuous process using Polyethylene glycol (PEG), which shows good binding properties and can be used for various bio and electronic applications.  相似文献   
4.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   
5.
Cover crops may influence soil carbon (C) sequestration and microbial biomass and activities by providing additional residue C to soil. We examined the influence of legume [crimson clover (Trifolium incarnatum L.)], nonlegume [rye (Secale cereale L.)], blend [a mixture of legumes containing balansa clover (Trifolium michelianum Savi), hairy vetch (Vicia villosa Roth), and crimson clover], and rye + blend mixture cover crops on soil C fractions at the 0–150 mm depth from 2001 to 2003. Active fractions of soil C included potential C mineralization (PCM) and microbial biomass C (MBC) and slow fraction as soil organic C (SOC). Experiments were conducted in Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults) under dryland cotton (Gossypium hirsutum L.) in central Georgia and in Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) under irrigated cotton in southern Georgia, USA. Both dryland and irrigated cotton were planted in strip tillage system where planting rows were tilled, thereby leaving the areas between rows untilled. Total aboveground cover crop and cotton C in dryland and irrigated conditions were 0.72–2.90 Mg C ha−1 greater in rye + blend than in other cover crops in 2001 but was 1.15–2.24 Mg C ha−1 greater in rye than in blend and rye + blend in 2002. In dryland cotton, PCM at 50–150 mm was greater in June 2001 and 2002 than in January 2003 but MBC at 0–150 mm was greater in January 2003 than in June 2001. In irrigated cotton, SOC at 0–150 mm was greater with rye + blend than with crimson clover and at 0–50 mm was greater in March than in December 2002. The PCM at 0–50 and 0–150 mm was greater with blend and crimson clover than with rye in April 2001 and was greater with crimson clover than with rye and rye + blend in March 2002. The MBC at 0–50 mm was greater with rye than with blend and crimson clover in April 2001 and was greater with rye, blend, and rye + blend than with crimson clover in March 2002. As a result, PCM decreased by 21–24 g CO2–C ha−1 d−1 but MBC increased by 90–224 g CO2–C ha−1 d−1 from June 2001 to January 2003 in dryland cotton. In irrigated cotton, SOC decreased by 0.1–1.1 kg C ha−1 d−1, and PCM decreased by 10 g CO2–C ha−1 d−1 with rye to 79 g CO2–C ha−1 d−1 with blend, but MBC increased by 13 g CO2–C ha−1 d−1 with blend to 120 g CO2–C ha−1 d−1 with crimson clover from April 2001 to December 2002. Soil active C fractions varied between seasons due to differences in temperature, water content, and substrate availability in dryland cotton, regardless of cover crops. In irrigated cotton, increase in crop C input with legume + nonlegume treatment increased soil C storage and microbial biomass but lower C/N ratio of legume cover crops increased C mineralization and microbial activities in the spring.  相似文献   
6.
Aquaculture International - Lectin protein families are diverse and multi-functional in crustaceans. The carbohydrate-binding domains (CRDs) of lectins recognize the molecular patterns associated...  相似文献   
7.
8.
ABSTRACT

“Lona ilish” is a salt fermented fish product prepared exclusively from fatty Indian shad (Tenualosa ilisha). Despite the presence of salt and metals coming from the container used for fermentation, rancidity is not observed as long as the products are kept immersed in the fermenting brine. To understand the technical principles of this indigenous preservation method, the traditional preparation was followed along with analyses of chemical and microbiological changes. The biochemical and microbiological changes were followed at 15 day intervals during the fermentation period of 150 days. From the 45th day of fermentation onwards, the microbial flora in the product was composed of only two species, tentatively identified as Bacillus licheniformis and Micrococcus kristinae. Because Bacillus licheniformis showed some atypical biochemical reactions, it was tentatively identified as Bacillus licheniformis var. III. These two bacterial species either singly or collectively were involved in the fermentation process.  相似文献   
9.
Background, aim, and scope  Forest plantations, widely grown for wood production, involve the selective promotion of single-tree species or replacement of natural species by exotic tree species. Slash pine (Pinus elliottii) has been chosen for reforestation of infertile sandy soils in southeast Queensland, Australia. These exotic pine plantations minimize soil and water losses and are important scientific study sites. The soil environment of these plantations, though devoid of sufficient nutrients, organic carbon and other factors, harbors innumerable bacteria that may play a crucial role in maintaining soil quality and ecosystem functions. These soil microorganisms also have the potential for use as sensitive biological indicators to reflect environmental changes. It is therefore essential to understand the interrelationships among bacterial communities and their environment by assessing their structural and functional diversity and their responses to disturbances. The main aim of our investigation was to determine the diversity of bacterial communities in forest litters and soil during the forest leaf litter decomposition using culture-dependent and culture-independent techniques. Materials and methods  A 25-cm (diameter) × 40-cm core sample was collected and fractionated into three subsamples designated E1 (L leaf litter layer), E2 (F leaf litter layer), and E5 (0–10 cm soil layer). Both culture-dependent and culture-independent methods were applied in this study. In the culture-independent study, a strategy of whole-community DNA extraction, polymerase chain reaction (PCR) amplification followed by cloning and 16S rDNA sequence analysis was used; for culture-dependent study, the strategy included sample plating and bacteria isolating, DNA extraction, PCR amplification, and 16S rDNA sequence analysis. The diversity similarities between two bacterial communities and two methods are quantified using Jensen–Shannon divergence. Results  From culture-dependent study, 336 colonies in total were isolated and grouped from the three subsamples, and the 16S rRNA sequence analysis from a representative isolate from each morphogroup (21 isolates) indicated that they belonged to the phyla Actinobacteria, Firmicutes, and Proteobacteria. Culture-independent assessment based on 16S rRNA gene library comprising 194 clones revealed that members of the phylum Actinobacteria were absent in the culture-independent studies. Clones in libraries from E1 consisted exclusively of members of the Firmicutes. The majority of clones from E2 were related to Firmicutes (79%) and Proteobacteria (21%). Clones derived from E5 were mostly affiliated with Acidobacterium (42%), followed by unclassified bacteria (27%), Verrucomicrobiales (12%), Proteobacteria (11%), and Planctomycetes (8%). Discussion  This study showed that bacterial culturabilities in different fractions of leaf litters were similar, and both of them were higher than the bacterial culturability in the soil. Unculturable bacterial diversity in the soil, however, was much higher than the leaf litter bacterial diversity. The bacterial diversity on the top layer of leaf litters was slightly less than that on the bottom layer of leaf litters. This might indicate that forest soils are a more complex environment than leaf litters are and also that they might inhabit more unculturable microorganisms in the forest soils, which would need to be further investigated. The leaf litter layer samples also demonstrate the significant difference between the bacterial community diversity discovered by these two methods in this study. The information provided by assessing the different fractions of leaf litters and forest soil has improved our understanding of the bacterial community distributions within the forest soil and the above-leaf litters in an exotic pine plantation of subtropical Australia. Conclusions  This study represents the first attempt to examine the bacterial community in the different fractions of forest leaf litters and soil in subtropical Australia. The data from this study show that the 16S rDNA clone libraries provided more comprehensive phylogenetic diversity in the soil and leaf litter samples than the culture collections provided, and both the culture-dependent and culture-independent studies revealed that the bacterial diversity present in the leaf litters was very different to that present in the soil. The comparative analysis of bacterial communities in different fractions of leaf litters and soil samples has also provided important baseline information about the bacterial diversity and composition in the exotic pine forest plantations. Recommendations and perspectives  The experimental data provided important information on the bacterial diversity in forest leaf litter and soil samples, though additional surveys and comparisons at different locations would be needed to further characterize. In addition, combined methods that can provide different parts of information on bacterial diversity are encouraged to be used in bacterial community study. The established libraries of diverse 16S rRNA gene fragments from slash pine leaf litters and forest soil can be used to construct specific DNA primers and probes to target bacterial groups of interest. It may then be possible to study the ecology of these bacterial communities and the role of specific bacterial groups that contribute to the many interesting properties of these environments.  相似文献   
10.
Kisspeptins, a family of neuropeptide encoded by the Kiss1 gene, have emerged as crucial regulator of fertility and reproduction by regulating the hypothalamic–pituitary–gonadal axis. The present study was aimed to identify and associate SNPs in the KISS1 gene with reproductive traits in cattle of Indian origin. DNA samples collected from 300 individual cows of three Indian dairy breeds (Gir, Kankrej and Frieswal) of cattle were used in the study. The SNPs of KISS1 gene were identified with PCR-RFLP and sequence analysis using two sets of primer pairs. A total of 5 SNPs were identified in the targeted region of which, two were selected for screening the population and association studies. The analysis revealed that genotypes of rs442633552G>A and rs42022871C>T had a significant association with dry period. The SNP rs42022871C>T also established significant role in milk production traits, and selection of TT-genotyped animals will improve the reproduction and production potential of the animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号