首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
水产渔业   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

In this article, optimal control methods based on a metabolite-constrained fish growth model are applied to the operation of fish production in an aquaponic system. The system is formulated for the twin objective of fish growth and plant fertilization to maximize the benefits by optimal and efficient use of resources from aquaculture. The state equations, basically mass balances, required by the optimization algorithms are given in the form of differential equations for the number of fish in the stock, their average weight as mediated through metabolism and appetite, the water recirculation and waste treatment, hydroponic nutrient requirements and their loss functions. Six parameters, that is, water temperature, flow rate, stock density, feed ration size per fish, energy consumption rate and the quality of food (percentage of digestible proteins) are used to control the system under dynamic conditions. The time to harvest is treated as a static decision variable that is repeatedly adjusted to find the profit-maximizing solution. By modeling the complex interactions between the economic and biological systems, it is possible to obtain the most efficient decisions with respect to diet composition, feeding rates, harvesting time and nutrient releases. Some sample numerical results using data from a tilapia-tomato farm are presented and discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号