首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
农学   1篇
农作物   1篇
水产渔业   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Lablab (Lablab purpureus (L.) Sweet) is a legume crop widely cultivated in tropical and subtropical regions of Africa and Asia. In this study, we assessed genetic diversity and population structure of 299 individuals of subspecies purpureus and bengalensis of lablab from Thailand using 13 simple sequence repeat (SSR) markers. The SSR markers detected only 34 alleles in total with a mean of 2.6 alleles per locus. Overall gene diversity was 0.360. Gene diversity (HE) and allelic richness (AR) in different geographic regions was comparable. Similarly, both HE and AR between subspecies purpureus and bengalensis were similar. STRUCTURE and neighbor-joining (NJ) analyses revealed that the 299 individuals were clustered into two major groups. In contrast, principal coordinate analysis (PCoA) revealed admixture of the lablab germplasm. STRUCTURE, NJ and PCoA analyses also revealed that the subspecies purpureus and bengalensis are not genetically differentiated. Although the number of individuals from the west of Thailand was small and all of them were collected from the same province, they possessed comparable gene diversity with those from the other geographic regions. These results demonstrated that there is moderately low genetic diversity of lablab in Thailand and the west of the country possesses high diversity of lablab.  相似文献   
2.
In this research we investigated the dyeing of cotton fabrics with extracts of Xylocarpus granatum, a mangrove plant with a long history of use in leather tanning and textile dyeing. X. granatum bark was extracted and spray-dried, yielding a tannin-rich, reddish-brown powder. This powder proved a suitable colorant for the natural dyeing of cotton with promising color fastness properties to wet treatments (washing, water, sea water, and perspiration), hot pressing, crocking, and light exposure. However, the dye alone produced only weak levels of coloration and therefore metallic salt mordants were employed to improve the color strength, through the formation of insoluble tannate complexes. The resulting fabric K/S values were dependent on the mordant used and exhibited the following trend: ferric sulfate > sodium dichromate > copper sulfate > potassium aluminum sulfate > no mordant, for fabrics exposed to mordants before and after dyeing. Mordanting resulted in slight variations in shade and color fastness. In most cases, the color fastness properties were preserved, except for color fastness to light and hot pressing, for which lowered ratings were found for some mordants. Stiffness and mechanical performance were not greatly affected by dyeing or mordanting, except for sodium dichromate mordanting which significantly stiffened and weakened the fabric. The ultraviolet protection factor (UPF) of all the dyed samples achieved the maximum (50+) level, highlighting the excellent UV shielding properties of the fabric. Overall, X. granatum bark extract is a promising, effective colorant for the natural dyeing of cotton in terms of appearance, fastness, and physical characteristics.  相似文献   
3.
Tilapia lake virus disease (TiLVD) is an emerging viral disease in tilapia with worldwide distribution. Although the horizontal transmission of TiLV has been demonstrated through the cohabitation of infected fish with susceptible fish, no direct experiment showed the potential of vertical transmission from broodstock to progeny. In this study, natural outbreaks of TiLV in broodstock and fry in two tilapia hatcheries were confirmed. The TiLV genomic RNA was detected in liver and reproductive organs of infected broodstock, while infective virus was isolated in susceptible cell line. In situ hybridization assay confirmed the presence of TiLV in the ovary and testis of naturally infected fish and experimentally challenged fish. Moreover, early detection of TiLV in 2‐day‐old fry and the presence of TiLV genomic RNA and viable virus in the testis and ovary suggested the possible transfer of this virus from infected broodstock to progenies. As infective virus was present in gonads and fry in natural outbreak and experimental fish, the importance of biosecurity and prevention of the virus to establish in the hatchery should be emphasized. Hence, the development of TiLV‐free broodstock and the maintenance of high biosecurity standards in the hatcheries are essential for any attempt of virus eradication.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号