首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
综合类   1篇
水产渔业   7篇
  2015年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Pilot‐scale trials were conducted to evaluate growout performance of hatchery‐reared summer flounder fingerlings in a state‐of‐the‐art recirculating aquaculture system (RAS). The outdoor RAS consisted of four 4.57‐m dia × 0.69‐m deep (vol. =11.3 m3) covered, insulated tanks and associated water treatment components. Fingerlings (85.1 g mean initial weight) supplied by a commercial hatchery were stocked into two tanks at a density of 1,014 fish/tank (7.63 kg/m3). Fish were fed an extruded dry floating diet consisting of 50% protein and 12% lipid. The temperature was maintained between 20 C and 23 C and the salinity was 34 ppt. Under these conditions, growth, growth variation (CVwt), feed utilization, and survival of fish fed to 100% and 82% of a satiation rate were compared. Due to clear changes in growth patterns during the study, data was analyzed in three phases. During phase 1 (d 1–d 196), fish showed rapid growth, reaching a mean weight of 288 g ± 105 and 316 g ± 102, with a CVwt of 0.36 and 0.32 and FCR's of 1.38 and 1.36 in the subsatiation and satiation groups, respectively. During phase 2 (d 196–d 454), fish displayed slower growth reaching mean weights of 392 g ± 144 and 436 g ± 121, with a CVwt of 0.37 and 0.28, and increasing FCR's of 3.45 and 3.12 in the subsatiation and satiation groups, respectively. During phase 3 (d 454–d 614), fish showed little growth reaching mean weights of 399 g ± 153 and 440 g ± 129, with a CVwt of 0.38 and 0.29 in the subsatiation and satiation groups, respectively. Over the entire growout period (d 1–d 614), feed conversion ratios were 2.39 and 2.37 and survival was 75% and 81 % in the subsatiation and satiation treatments, respectively. The maximum biomass density reached during the study was 32.3 kg/m3. The satiation feed rate was superior to the 82% satiation rate, since it maximized growth rates, with no effect on FCR. The higher CVwt in the subsatiation group suggests increased competition for a restricted ration led to a slower growth with more growth variation. The decrease in growth in phases 2 and 3 was probably related to a high percentage of slower growing male fish in the population and the onset of sexual maturity. This study demonstrated that under commercial scale conditions, summer flounder can be successfully grown to a marketable size in a recirculating aquaculture system. Based on these results, it is recommended that a farmer feed at a satiation rate to minimize growout time. More research is needed to maintain high growth rates through marketable sizes through all‐female production and/or inhibition of sexual maturity.  相似文献   
2.
Yellow perch, Perca flavescens, exhibit sexually dimorphic growth detected as the fish enter puberty. The purpose of this study was to evaluate the differential influences of photoperiod and temperature on the sexual maturation and dimorphic growth pattern of yellow perch. Four combinations of constant (CP) or natural (NP) photoperiod with constant (CT) or natural (NT) temperature were evaluated (CPCT, CPNT, NPCT, NPNT). Following 6 months of growth, results indicate that (1) CT is the strongest promoter of overall growth regardless of photoperiod. Perch reared under CT were 26.4 ± 8.1 g heavier than perch reared under NT (P < 0.0001). (2) CP also promotes overall growth regardless of temperature. CP perch outgrew NP perch by 7.0 ± 8.1 g (P < 0.0872). (3) NP (decreasing) initiates maturation in yellow perch regardless of temperature. (4) NT is required for late maturational processes. While both NP groups initiated maturation, only NPNT females were able to recruit oocytes to a vitellogenic stage. Only NPNT males were able to sustain spermiation to the end of the study. (5) CPCT confer the best overall growth performance, fully inhibit maturation in both genders, and suppress a sexually dimorphic growth pattern up to 53 g average weight. These results indicate that using a CPCT regime during intensive fingerling production will produce a larger, more uniform fish population that could alleviate losses as a result of cannibalism. Perch that remained immature did not exhibit a dimorphic growth pattern.  相似文献   
3.
This study evaluated wood chips and wheat straw as inexpensive and readily available alternatives to more expensive plastic media for denitrification processes in treating aquaculture wastewaters or other high nitrate waters. Nine 3.8-L laboratory scale reactors (40 cm packed height × 10 cm diameter) were used to compare the performance of wood chips, wheat straw, and Kaldnes plastic media in the removal of nitrate from synthetic aquaculture wastewater. These upflow bioreactors were loaded at a constant flow rate and three influent NO3–N concentrations of 50, 120, and 200 mg/L each for at least 4 weeks, in sequence. These experiments showed that both wood chips and wheat straw produced comparable denitrification rates to the Kaldnes plastic media. As much as 99% of nitrate was removed from the wastewater of 200 mg NO3–N/L influent concentration. Pseudo-steady state denitrification rates for 200 mg NO3–N/L influent concentrations averaged (1360 ± 40) g N/(m3 d) for wood chips, (1360 ± 80) g N/(m3 d) for wheat straw, and (1330 ± 70) g N/(m3 d) for Kaldnes media. These values were not the maximum potential of the reactors as nitrate profiles up through the reactors indicated that nitrate reductions in the lower half of the reactors were more than double the averages for the whole reactor. COD consumption per unit of NO3–N removed was highest with the Kaldnes media (3.41–3.95) compared to wood chips (3.34–3.64) and wheat straw (3.26–3.46). Effluent ammonia concentrations were near zero while nitrites were around 2.0 mg NO2–N/L for all reactor types and loading rates. During the denitrification process, alkalinity and pH increased while the oxidation–reduction potential decreased with nitrate removal.

Wood chips and wheat straw lost 16.2% and 37.7% of their masses, respectively, during the 140-day experiment. There were signs of physical degradation that included discoloration and structural transformation. The carbon to nitrogen ratio of the media also decreased. Both wood chips and wheat straw can be used as filter media for biological denitrification, but time limitations for the life of both materials must be considered.  相似文献   

4.
A study to determine the effects of four stocking densities on growth and feed utilization of wild‐caught black sea bass Centropristis striata was conducted in a pilot‐scale recirculating tank system. The outdoor system consisted of 12 insulated fiberglass tanks (dia. = 1.85 m; vol. = 2.17 m3) supported by biological filters, UV sterilizers, and heat pumps. Subadults (N= 525; ×± SD = 249 ± 16.8 g) were stocked at densities of 4.6 fish/m3 (1.18 kg/m3), 16 fish/ m3 (3.91 kg/m3), 25.3 fish/m3 (6.83 kg/m3), and 36 fish/m3 (7.95 kg1m3), with three replicate tanks per treatment. Fish were grown under 35 ppt salinity, 21‐25 C, and under ambient photoperiod conditions. A commercial flounder diet containing 50% protein and 12% lipid was hand‐fed twice daily to satiation for 201 d. Mean (range) total ammonia‐nitrogen, 0.61 (0‐2.1) mg/L, nitrite‐nitrogen, 0.77 (0.04‐3.6) mg/L, and nitrate‐nitrogen 40.1 (0‐306) mg/L were significantly higher (P < 0.0001) in the 25.3 and 36 fish/m3 treatments than in the 4.6 and 16 fish/m3 treatments [0.19 (0.05‐0.5), 0.1 (0.24‐0.63), and 11.9 (1.3‐82.2) mg/L, respectively]. However, there were no significant differences (P > 0.05) in growth (RGR = 196.8‐243.1%; DWG = 2.55‐2.83 g/d; and SGR = 0.55‐0.61%/d), coefficient of variation of body weight (CwtV., = 0.24‐0.25), condition factor (K = 2.2‐2.4), feed consumption (FC = 1.45‐1.65%/d), and feed conversion ratio (FCR = 1.45‐1.52) among stocking densities. Final biomass densities on day 201 reached 3.48, 12.0, 21.1, and 27.2 kg/m3 at stocking densities of 4.6, 16, 25.3, and 36 fish/m3, respectively. Survival (83.8‐99.1%) did not differ among treatments. Apparent net protein retention (ANPR) was significantly higher (P < 0.005) for fish stocked at the lower densities of 4.6 and 16 fish/m3 (22.5‐23.7%) than for those stocked at 25.3 and 36 fish/m3 (21‐20.1%). There were no significant differences (P > 0.05) in apparent net energy retention (ANER = 55.9‐59.1 %) among stocking densities. Final whole body protein (15.3‐16.3%) and lipid (23.1‐26.4%) levels did not differ significantly (P > 0.05) among treatments. The results demonstrated that growth, survival, and feed utilization were not impaired under stocking densities ranging from 4.6‐36 fish/m3 (3.48‐27.2 kg/m3), despite a slight reduction in water quality at the higher densities. In addition, growth variation and final whole body protein and lipid levels were not influenced by these densities. The results suggest that black sea bass are tolerant of crowding and moderate variations in water quality during intensive culture in recirculating tank systems and that higher stocking densities are possible.  相似文献   
5.
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved.  相似文献   
6.
Axonal guidance and vascular patterning share several guidance cues, including proteins in the netrin family. We demonstrate that netrins stimulate proliferation, migration, and tube formation of human endothelial cells in vitro and that this stimulation is independent of known netrin receptors. Suppression of netrin1a messenger RNA in zebrafish inhibits vascular sprouting, implying a proangiogenic role for netrins during vertebrate development. We also show that netrins accelerate neovascularization in an in vivo model of ischemia and that they reverse neuropathy and vasculopathy in a diabetic murine model. We propose that the attractive vascular and neural guidance functions of netrins offer a unique therapeutic potential.  相似文献   
7.
As marine finfish aquaculture expands, there is an increasing interest in the ability to ship early life stages from breeding centres to hatcheries so that each hatchery does not have to maintain its own broodstock. Here, we conducted 24 h air‐shipping simulations with yolk‐sac larvae of California yellowtail (CYT; Seriola lalandi) and white seabass (WSB; Atractoscion nobilis) to help fill in the informational gaps for shipping marine fish larvae. We examined the effects of a pH buffer on water quality, post‐shipping larval survival and subsequent survival to first feeding at larval densities of 1000, 3000, 6000 and 9000 larvae L?1. The pH buffer, 8.3 Trizma®, was tested at varying concentrations of zero (NT = 0.00 g L?1), low (LT = 0.75 g L?1), medium (MT = 1.5 g L?1) and high (HT = 3.0 g L?1). Trials were conducted using replicate 2 L aquarium bags filled with 500 mL of seawater and held in a water bath at 19–20°C. Results showed an interspecific difference in survival at the highest shipping densities under these experimental conditions. Shipping densities up to 6750 CYT larvae L?1 or 3000 WSB larvae L?1 consistently yielded >90% survival immediately after simulated shipment and >85% survival 48 h after the simulations. Furthermore, at these densities, pH was maintained at ~8.0 when buffered at 1.5 g L?1. The highest tested densities of 9580 CYT larvae L?1 and 9940 WSB larvae L?1, yielded lower survival 69–79% and 0.0–1.3% respectively after 24 h. Final pH in the high density CYT trials were unsatisfactory (below 7.0), regardless of the buffer concentration; however pH in the WSB high density trials improved with increasing buffer concentration. On the basis of the results from these air‐shipping simulations, we recommend CYT and WSB larvae be shipped in seawater with 1.5 g L?1 Trizma® at densities not greater than 6750 larvae L?1 for CYT and 3000 larvae L?1 for WSB. We believe this represents an important step in improving long distance transport protocols for these species and provides useful guidance in air transport of other economically and ecologically important marine species. Additional research is warranted to compare these simulation results with those from actual air shipments, as we did not account for factors that may vary in flight like temperature and pressure variations, and physical agitation.  相似文献   
8.
Aquaculture production in recirculating systems has been the focus of research and development efforts for decades. Although considerable resources have been expended on these systems in the private sector, there is a scarcity of data on the economic or engineering performance of commercial scale recirculating production systems. This paper presents the results of a computer simulation of tilapia production in a small recirculating production system. Much of the performance data has been developed at a demonstration facility at North Carolina State University. Given the assumptions of the base case simulation, the cost of producing a kilogram of tilapia in the recirculating system described is estimated to be $2.79 ($1.27/lb). The results of a model sensitivity analysis indicate that while improvements in the performance efficiency of system components did not greatly affect fish production costs, reductions in feed costs and improvements in the feed conversion ratio caused the greatest reduction of production cost of all of the operational variables investigated. The analysis further indicates that the greatest gains to be realized in improving profitability are those associated with increasing the productive capacity or decreasing the investment cost of a recirculating fish production system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号