首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
水产渔业   3篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
Although the Mekong River is one of the world's 35 biodiversity hot spots, the large‐scale patterns of fish diversity and assemblage structure remain poorly addressed. This study aimed to investigate the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data (i.e. from December 2000 to November 2001) at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH and total phosphorus. Specifically, upstream assemblages were characterised by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch‐like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR.  相似文献   
2.
The Tonle Sap River and Lake (TSRL) is South‐East Asia's largest tropical flood pulse with a flow‐reversal system that supports one of the world's largest freshwater fisheries. However, among the world's tropical floodplains, the resources of the TSRL have received little ecological research. Here, we described the spatiotemporal TSRL fish diversity and community variation using daily records from 2012 to 2015 on fish abundance from six sites covering the TSRL system. We found that high fish diversity occurred in sites located in the middle of Tonle Sap Lake, and the lowest diversity was observed in the southern section. The spatial abundance distribution patterns displayed a river–lake gradient, with three fish assemblages that were clustered based on their composition similarities and were characterised by 96 indicator species. In the southern section, fish assemblages were characterised by longitudinal migratory fishes; in contrast, in the middle system, fish assemblages were represented by species with combined ecological attributes (i.e. longitudinal and lateral migratory species and floodplain residents). Towards the northern section, fish assemblages were composed of lateral migratory and floodplain resident species. Species richness and abundance peaked at approximately 2–2.5 and 4 months, respectively, after the peak flow in early October, during which Tonle Sap River resumes its normal flow direction (outflow). This suggests that seasonal flood pulses (i.e. rising and falling water levels) play a pivotal role in structuring spatiotemporal variation in the TSRL fish assemblages. Our study has implications for fisheries monitoring and conservation initiatives.  相似文献   
3.
Despite their economic and ecological importance, migratory fishes of the Lower Mekong Basin (LMB) remain understudied, which hampers effective management to sustain valuable fisheries and address serious threats such as habitat degradation, development and overharvest. From a list of potential knowledge needs, a group of fisheries professionals most frequently identified six top priorities for managing migratory fishes in Cambodia: (1) population abundances and trends, (2) life cycles and life history, (3) migration timing and triggers, (4) migration routes and distances, (5) locations of key habitats and spawning areas, and (6) environmental and habitat requirements. These needs are discussed along with nine relevant methodologies for addressing them, including fisheries-dependent and fisheries-independent sampling, reproductive techniques and captive studies, otolith and genetic analysis tools, and tagging and imaging techniques. A suggested research framework is also presented to inform adaptive management of migratory fishes. While emphasis is given to Cambodia, the analysis is also applicable to other LMB countries, given that migratory fishes occur throughout the basin and migrate across borders. It is suggested that a robust research and monitoring agenda is required to prioritise knowledge needs and select appropriate methodologies to answer questions vital to inform sustainable migratory fish management in Cambodia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号