首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
林业   1篇
农学   1篇
  1篇
综合类   1篇
水产渔业   1篇
畜牧兽医   7篇
园艺   2篇
植物保护   4篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2002年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有18条查询结果,搜索用时 109 毫秒
1.
2.
3.
R. Cohen    Y. Burger    C. Horev    U. Saar    M. Raviv 《Plant Breeding》2008,127(4):424-428
The effect of peat moss on fusarium wilt of melon ( Cucumis melo L.) was studied in order to improve the selection process of resistant melons during breeding programmes. Disease symptoms were evident earlier and disease progress was faster in seedlings that were transplanted to peat following inoculation than in those transplanted to sand. The resistant breeding line used as a control did not show any wilt symptoms in either medium. Mixing the peat with sand or perlite reduced the disease development rate and the final disease incidence. The effects of peat and sand on disease progress were evaluated with two segregating melon populations in which the expected susceptible : resistant ratio was 25 : 75. In both populations, disease incidence was higher in the peat, which enables breeders to identify resistant plants and to lower the risk of using escapees as resistant plants. The mechanism of disease enhancement may include both biotic and abiotic components. There is an indication that peat induces plant susceptibility before inoculation. Melon seedlings germinated in peat and transplanted into sand exhibited significantly greater wilt incidence than those that germinated in sand and were transplanted into sand following the inoculation. Disease progress in sterile peat was significantly slower than that in non-sterile peat, which suggests the possible involvement of microbial activity.  相似文献   
4.
The effect of storage conditions on compost suppressiveness against fusarium wilt of melon, caused by Fusarium oxysporum f. sp. melonis (FOM) was studied in relation to the dynamics of compost microbial activity and biodegradability. For this purpose, mature suppressive compost, prepared from tomato plants and separated cow manure, was divided into four portions and stored for one year under cool/warm (12 or 28 °C) or dry/wet (15-35 or 55-65% moisture content) conditions, in four different combinations: cool-dry, warm-dry, cool-wet and warm-wet. All composts retained and even enhanced their suppressive capacity during storage, with no significant differences among them by the end of the storage period. However, significant differences were found in the dynamics of some of the measured chemical and microbial properties. The microbial activity of composts stored under wet conditions was higher than that of those stored under dry condition, which resulted in a substantial decrease in dissolved organic matter content (expressed as dissolved organic carbon; DOC) and increase in its recalcitrance to biological degradation, decrease in basal heat emission, slower response to added glucose or citric acid, and higher NO3 concentration, indicating increased nitrification under wet conditions. The DOC significantly correlated with several microbial properties as well as with compost suppressiveness of fusarium wilt of melon seedlings, and may be regarded as a most suitable general index for compost maturity. A best-subset multiple linear regression analysis revealed that the three best predictors, namely dissolved organic carbon (DOC), basal heat, and mesophilic bacterial counts, could explain as much as 83% of the total variance in compost suppressiveness. The generally agreed association between compost maturity and suppressiveness was verified in this case. It appears that compost microbial populations might compete and interfere with the saprophytic stage of FOM conidia, between germination and host invasion. In conclusion, it was demonstrated that compost suppressiveness against fusarium wilt of melon can be maintained for at least one year under a wide range of storage conditions, without any loss of suppressive capacity. This fact has positive logistical implications for the use of suppressive composts against FOM.  相似文献   
5.
Mycoplasma synoviae (MS) is an important pathogen of domestic poultry and is prevalent in commercial layers. During the last decade Escherichia coli peritonitis became a major cause of layer mortality. The possible role of MS in the E. coli peritonitis syndrome of laying hens was studied. Four groups of 64 mycoplasma-free commercial layers at the onset of lay (about 80% daily production) were challenged with a virulent MS strain or a virulent avian E. coli strain or both. The four experimental groups were identified as follows: negative control, E. coli, MS, and MS plus E. coli. A typical E. coli peritonitis mortality was reproduced and included one, three, zero, and five birds in the negative control, E. coli, MS, and MS plus E. coli groups, respectively. Only the increased mortality in the MS plus E. coli group had statistical significance. Four weeks postchallenge 10 clinically normal birds from each of the four experimental groups were necropsied. All of the examined birds in the two MS-challenged groups demonstrated severe tracheal lesions. Body cavity lesions were detected in two and four birds in the MS and MS plus E. coli groups, respectively. The results demonstrate a possible pathogenesis mechanism of respiratory origin with regard to the layer E. coli peritonitis syndrome, show the MS pathological effect in layers, and indicate that a virulent MS strain can act as a complicating factor in the layer E. coli peritonitis syndrome.  相似文献   
6.
Energy utilization for heating is one of the most expensive greenhouse climate control operations. The temperature set-point is determined by many interrelated environmental, physiological, and economic factors but is fundamentally driven by the required growth rate of the plant or crop for quality and profitability. Temperatures are maintained to maximize production and affect timing of harvest of greenhouse-grown crops. In general, winter greenhouse environments for most cut-flower roses are heated to a target temperature of 16–18 °C. For rose, such temperature targets are based on grower experience along with horticultural research and should be considered a compromise across all factors. In the current research we studied the concept of “potential growth rate” (PGR), based on a thermodynamic growth model and how PGR relates to the typical temperature recommendation (TTR) for set-points for greenhouse heating and cooling in commercial horticultural production. PGR of specific growing organs (leaves, shoot tips, roots, etc) can be deduced using calorespirometric measurements in relation to various environmental factors such as temperature effect on biomass production. This research consisted of two facets: (1) determination of cultivar-specific alternate TTRs based on calorimetric PGR measurement and then (2) testing these TTRs in greenhouse rose flower production. The results of this study suggested that TTRs for the cultivar ‘Kardinal’ can be lowered at the time of bud emergence, when this cultivar can tolerate a lower temperature. Also, since the cultivar ‘Milva’ can tolerate lower temperature at time of leaflet unfolding, the current TTR can be adjusted to reflect this. We investigated a set of alternate TTRs by growing rose plants on movable carts and shifting them to various pre-determined night temperature conditions. During the relevant growing stages, half of the plants were given a cold night temperature (14 °C) treatment, while control plants were left in the normal greenhouse temperature (18 °C). This procedure was repeated for three flushes of flowering rose shoots. Flower shoots were counted and weighed (fresh and dry); shoot length was measured several times per week. It was found that the predictions were valid and (with one exception) no significant effect on the number of flowers, their quality or biomass was caused by this procedure. The implication of this work is that heating cost can be reduced for some rose cultivars by allowing night temperatures to be lower than the typical recommendations for those cultivars that show high metabolic activity at such cooler conditions.  相似文献   
7.
Wetzel AN  Lefevre KM  Raviv Z 《Avian diseases》2010,54(4):1292-1297
Mycoplasma synoviae (MS) is an important pathogen of chickens and turkeys. In recent years sequence analysis of the partial MS variable lipoprotein and hemagglutinin A (vlhA) gene PCR product has been utilized routinely for MS strain genotyping. Several PCR assays have been proposed for the amplification of the conserved upstream region of the MS vlhA gene; however, in several clinical instances the published assays failed to generate vlhA PCR products from confirmed MS-positive cases. These occurrences hindered our capability to genotype those cases. In silico analysis of the published MS vlhA PCRs raised concerns, which were addressed by the design of revised MS vlhA PCRs. The published and revised assays were tested for their relative sensitivity and specificity with laboratory and clinical MS-positive samples. One of the revised MS vlhA PCRs (revised Hong) was demonstrated to be more sensitive and specific, and amplified all clinical samples analyzed in this study.  相似文献   
8.
Rooting ability of cuttings from avocado (Persea americana Mill.) seedlings declined during the first 12 months of development. Cuttings from one-year-old seedlings rooted at a similar rate to cuttings prepared from mature plants. The amount of gibberellin-like substances in the leaves decreased during this time whereas abscisic acid content increased. Application of GA to avocado seedlings induced shoot elongation but failed to maintain the initial, high rooting ability. Treatments with ABA and AM0 1618 had no effect on either rooting or elongation. During the development of roots, the endogenous Avocado Rooting Promoter (ARP) accumulated at a faster rate in juvenile cuttings than in mature cuttings.  相似文献   
9.
Mycoplasma gallisepticum causes respiratory disease and production losses in poultry. Vaccination of poultry with M. gallisepticum live vaccines is an approach to reduce susceptibility to infection and to prevent the economic losses. The development and evaluation of live vaccines usually requires the involvement of several vaccine and challenge strains in the same experimental setup. Our goal was to develop a tool to allow the differentiation between a set of known M. gallisepticum strains in a quantitative manner. We developed 5 real-time PCR assays that absolutely differentiated between one of the five commercial and laboratory vaccine strains: F, ts-11, 6/85, K5831, K5054, and the challenge strain R low when tested on in vitro cultures. The assay K5831 vs. R low was also tested on specimens from live birds that were vaccinated with K5831 and challenged with R low, and successfully differentiated between the vaccine and the challenge strains in a quantitative manner. This preliminary in vivo application of the method also shed light on possible protection mechanisms for the M. gallisepticum K5831 vaccine strain.  相似文献   
10.
The suppressive ability of three plant residue-based composts that could serve as components of soilless media for several vegetable crops was tested on four different formae speciales of Fusarium oxysporum: melonis, basilici, radicis-lycopersici and radicis-cucumerinum. The composts were prepared under controlled conditions from a mixture of separated cow manure (SCM) with orange peels (OP), wheat straw (WS), or dried tomato plants that had been removed from the greenhouse after the end of the season (TP). Disease development in melon, tomato and cucumber seedlings growing in the three composts was significantly less than that observed in peat. Plant inoculation was achieved by conidia produced in culture, conidia naturally produced on infected stems and soil inoculum produced by enriching the soil with infected tissues. Pathogen colonization of the roots and stems of infected melon plants grown in TP–SCM and OP–SCM composts was significantly lower than that of peat-grown plants. Sterilization by gamma irradiation reduced the suppressive capability of TP–SCM and OP–SCM composts, whereas it did not affect the disease development and final disease incidence in peat. Tested formae speciales exhibited differing decline rates of the conidia incorporated in the composts, compared with the rate in the peat control, which suggests that different mechanisms may be involved in the suppression of the different pathogens. The present study shows that composts based on plant-waste residues suppress diseases caused by different formae speciales of Fusarium oxysporum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号