首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
林业   2篇
  3篇
农作物   2篇
水产渔业   2篇
畜牧兽医   1篇
  2022年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
We investigated the influence of different levels of osmotic stress on growth and development in selected wild almond species(eight Prunus spp.) grown in vitro. The study, while endorsing the efficacy of in vitro screening of auxiliary buds of wild almond for osmotic stress tolerance, showed species variability in its response to osmotic stress. Osmotic stress reduced growth and development of all the species. However, the putative tolerant Prunus spp. showed better performance than the putative susceptible genotypes. On average there was an 80% decrease in shoot dry weight at-1.2 MPa. Reduction in shoot weight was more common in osmotic stress-susceptible species in the section labeled ‘Euamygdalus'. The tolerant Prunus species produced smaller changes in biochemical responses than the sensitive cultivars for malondialdehyde content, catalase activity, relative permeability of protoplast membranes, and net photosynthetic rate. The tolerant species maintained cell integrity better than drought sensitive species. Wild almond species in the section labeled ‘Spartioides'(Prunus arabica(Olivier) Neikle, Prunus glauca (Browicz) A.E. Murray, Prunus scoparia Spach) and ‘Lycioides'(Prunus lycioides Spach, Prunus reuteri Bossi. et Bushe) were best adapted to osmotic stress. Increase in chlorophyll concentration and leaf thickness under high osmotic stress can be considered as preliminary selection parameters for osmotic stress tolerance in Prunus spp. The study confirmed the efficacy of the in vitro method for screening of large number of genotypes for osmotic stress tolerance in wild almond species.  相似文献   
2.

As a study of cryoprotectant toxicity is an essential prerequisite for the development of a cryopreservation protocol, this study focuses on determining the toxicity of four permeable cryoprotectants: dimethyl sulfoxide (DMSO), propylene glycol (PG), methanol (MeOH), and acetamide (Ac). In cryoprotectant toxicity experiments, striped gourami (Trichogaster fasciata) embryos at three different developmental stages (multi cell, 100% epiboly, and proliferation of somites) were exposed to cryoprotectant solutions with concentrations from 1 to 4 M for a period of 5 and 15 min. Following these treatments, the embryos were incubated until the evaluation of hatching rate. Embryos were tolerant to low concentrations of all cryoprotectants tested in the range of 1 to 2 M for all developmental stages. Early stage embryos were more vulnerable to high concentration (3 and 4 M) than late stage embryos. Results also showed that as concentration and duration of exposure increased, the hatching rate significantly decrease (P < 0.05). On a molar-equivalent basis, DMSO appeared to be less toxic to PG, MeOH, and Ac in general. Exposure to cryoprotectants revealed a stage-dependent sensitivity. Toxicity increased in the order of MeOH < DMSO < PG < Ac in multi cell stage and DMSO < MeOH < PG < Ac in 100% epiboly and proliferation of somites stages. The proliferation of somites stage embryos was less sensitive to exposure to cryoprotectants than multi cell and 100% epiboly stages. These findings could be important for designing cryopreservation protocols for this demanding ornamental species.

  相似文献   
3.
Fabrication of Ceftazidime (CTZ) loaded silk fibroin/gelatin (SF/GT) nanofibers (NFs) without the loss of structure and bioactivity of CTZ was demonstrated by electrospinning method. The structure, morphology and mechanical properties of the electrospun SF/GT nanofibrous mats were characterized using FT-IR, SEM and DSC. The drug release profile of different electrospun fibers was analyzed using spectrophotometric method, and also diffusion method was applied to assess the antibacterial effect of NFs. Cell viability was evaluated by MTT assay. The results show that the average diameter of drug loaded NFs at the optimum polymer to drug feeding ratio (10:1) was 276.55±35.8 nm, while increasing the feeding ratio to 1:1 increases the average diameter to 825.02±70.3 nm. FT-IR of drug loaded NFs was revealed that CTZ was successfully encapsulated into NFs while viability study approved cytocompatibility of SF/GT NFs. CTZ was released from NFs during 6 h, and formation of inhibition zone in diffusion test demonstrated the antibacterial effect of drug loaded NFs. Altogether, the CTZ loaded SF/GT NFs can improve the drug effectiveness particularly in the prevention of post-surgical adhesions and infections for wound dressing.  相似文献   
4.
An investigation was conducted to study the effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedlings. Drought stress increases the amount of Reactive Oxygen Species (ROS), leading to metabolic disorders. It is now known that higher levels of activity-protective mechanisms render the cells more enduring against environmental stress including drought. Two widely cultivated cultivars of wheat in Iran, Sab. and N. Sar. were grown up according to the hydroponic method. Having reached the stage of 4-5 leaves growth; the plants were kept under 4, 8 and 12 bars potential resulting from using Polyethylene Glycol 8000 (PEG 8000). Hogland solution was used as the control. Then the amount of ascorbate, glutathione, superoxide dismutase and catalase activity, proline and lipid Peroxidation was measured in cut samples of the leaves. The result indicated an increase in the amount of Ascorbate and Glutathione as the stress was intensified in the case of Sab. Moreover, the reduced form of Ascorbate (ASC) and Glutathione (GSH) were higher in Sab. at 8 and 12 bars. The amount of Proline accumulation was considerably higher in Sab. than N. Sar. SOD activity, on the other hand, diminished at 8 and 12 bar levels. CAT activity is also regarded as a limiting factor. Lipid peroxidation was also geared up as the stress was intensified. These limiting factors rendered N. Sar. cultivar more sensitive to water stress resulting from PEG8000 compared to Sab.  相似文献   
5.
In order to investigate the effects of exogenous spermidine on water limitation-induced damage on common bean (Phaseolus vulgaris L.) genotypes, a field experiment was conducted over two growth seasons. The experiment was arranged as a split-split plot design and three replications. Treatments were three water stress levels (non-stress, moderate and severe stress), three bean genotypes (Akhtar, Pak and COS12) and two spermidine levels (control and foliar application). The results showed that water stress reduced markedly leaf relative water content, SPAD values, specific leaf area, leaf area index, plant height, relative growth rate, shoot dry weight and grain yield; however, increased leaf density, leaf relative electrolyte leakage, stomatal density, leaf angle and leaf temperature of bean genotypes. Spermidine application increased relative water content, SPAD values, leaf area, leaf area index, shoot dry weight and grain yield. Overall, exogenous spermidine usage as a free radical scavenger counteracted deleterious water deficit effects.  相似文献   
6.
7.
Soybean kunitz trypsin inhibitor (STI) was purified from aqueous extract of defatted soybean meal by affinity and ion exchange chromatography. In this study the effect of purified STI on cell migration and tubulogenesis in microcarrier-based fibrin gel was assayed. Purified STI had strong inhibitory effect on human umbilical vein endothelial cells migration and tubulogenesis in fibrin matrix, without toxic effects in the studied doses.  相似文献   
8.
Soil salinity is a serious threat in many parts of Iran, which negatively affects plant production. In order to investigate response of durum wheat to salinity, two genotypes, ‘Turkey 506’ (salt tolerant) and ‘Egypt 557’ (salt sensitive), were grown in hydroponic conditions, exposed to various salt levels (0, 50, 100, 150 and 200 mmol NaCl) in a split split plot based on randomized complete block design with three replications of each treatment. Salinity stress decreased relative water content (RWC), potassium content, potassium/sodium ratio, chlorophyll a (chla), chlorophyll b (chlb), and total chlorophyll contents, efficiency of photosystem II (Fv/Fm) and membrane stability index (MSI), and increased sodium, proline and soluble sugars concentrations and ratio of chla/chlb in both genotypes. The decrease in RWC, chla, chlb, Fv/Fm, and MSI were significantly higher in ‘Egypt 557’ than ‘Turkey 506’. ‘Turkey 506’ showed higher content of potassium, potassium/sodium ratio, proline, and soluble sugar concentrations as well as lower sodium content as compared with ‘Egypt 557’. The salinity tolerance of ‘Turkey 506’ is associated with higher RWC, potassium content, osmolyte concentrations, chlorophyll contents, Fv/Fm ratio, and maybe more vacuole sequestration of sodium.  相似文献   
9.
The molecular analysis of disease pathogenesis in cattle has been limited by the lack of availability of tools to analyze both host and pathogen responses. These limitations are disappearing with the advent of methodologies such as microarrays that facilitate rapid characterization of global gene expression at the level of individual cells and tissues. The present review focuses on the use of microarray technologies to investigate the functional pathogenomics of infectious disease in cattle. We discuss a number of unique issues that must be addressed when designing both in vitro and in vivo model systems to analyze host responses to a specific pathogen. Furthermore, comparative functional genomic strategies are discussed that can be used to address questions regarding host responses that are either common to a variety of pathogens or unique to individual pathogens. These strategies can also be applied to investigations of cell signaling pathways and the analyses of innate immune responses. Microarray analyses of both host and pathogen responses hold substantial promise for the generation of databases that can be used in the future to address a wide variety of questions. A critical component limiting these comparative analyses will be the quality of the databases and the complete functional annotation of the bovine genome. These limitations are discussed with an indication of future developments that will accelerate the validation of data generated when completing a molecular characterization of disease pathogenesis in cattle.  相似文献   
10.
To conquer disease problem in shrimp industries, probiotic biocontrol is a well-known remedy now. The antagonistic ability of separated isolates from different parts of juvenile P. monodon was screened against shrimp Vibrio pathogens, V. parahaemolyticus and V. alginolyticus. The most antagonistic effect was observed for an isolate that primarily identified as Shewanella algae using conventional method followed by Biolog GN and GP microplates. Since adaptability to the host optimum cultural condition of the target organism is of the great importance, response surface methodology, with central composite design, was applied to assess log cell count response of S. algae in different incubation conditions. Therefore, four independent variables were assumed as: temperature (10–50°C), pH (6–10), NaCl concentration (0–50‰) and time (12–60 h). The coefficients of multiple determinations (R 2) for the responses log cell count of S. algae being 0.827. Temperature was the merely significant independent variable that affected the log cell count of the candidate probiotic. The candidate probiotic was revealed a reasonable growth response in quite wide range of temperature, pH and NaCl concentration in which the maximum levels were in same range of optimum shrimp culture.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号