首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
水产渔业   5篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
This study aimed to examine the use of Streptococcus agalactiae polyvalent vaccine in tilapia broodstock and the effect of maternal immunity and resistance on their offspring against S. agalactiae strain. The broodstock was injected with polyvalent vaccine of S. agalactiae at a dose of 108 CFU per fish at 2nd gonadal maturity until spawning. Challenge test was carried out on the offspring at the 5, 10, 15 and 20 days after hatching using NK1, N17O, N14G, N3M, N4M strain respectively and combination of them. We observed immunological parameters in broodstock, eggs and larvae and relative per cent survival (RPS) of larvae after challenged with pathogenic S. agalactiae. The results showed that the leukocytes, phagocytic activity, respiratory burst, lysozyme activity and antibody levels of vaccinated broodstock had higher level compared with unvaccinated broodstock. The high level of the lysozyme activity, antibody levels and recombination activating gene 1 (RAG1) were also observed in eggs and larvae from vaccinated broodstock. Larvae produced from vaccinated broodstock when challenged with variety strain of pathogenic S. agalactiae had RPS value more than 50% until 20 days after hatching. In conclusion, polyvalent vaccine of S. agalactiae administrated in the broodstock could enhance immunity in the broodstock and protect their offspring from pathogenic S. agalactiae.  相似文献   
3.
This study aims to evaluate the efficacy of Streptococcus agalactiae vaccine preparations, administered to tilapia broodstock, in preventing streptococcosis, through specific and non-specific immunity being transferred to the offspring. The study was conducted in two phases. The first was the vaccination of the broodstock using a whole-cell vaccine, an extracellular product (ECP) vaccine, and a combination of the two with a ratio of 1:1. The vaccines were administered to the broodstock 2 and 3 weeks before spawning. The second phase was the challenge test for larvae produced by vaccinated broodstock, and larvae from the unvaccinated control broodstock, through immersion in a suspension of 107 cfu mL?1 pathogenic S. agalactiae for 30 min, at ages 7, 14, 21, and 28 days post-hatching. The parameters evaluated were the broodstock’s blood profile, antibody-lysozyme (in broodstock, eggs, and larvae), and the larvae’s relative percent survival. Treatment with the combined vaccine administered 3 weeks before spawning resulted in the broodstock having significantly better antibody levels, lysozyme activity, and hematology profiles, compared to the other treatments (p?<?0.05). In addition, the larvae produced by broodstock subjected to this treatment, when challenged with the pathogenic S. agalactiae at ages 7, 14, 21, and 28 days, had RPS values of 95.24, 83.33, 72.22, and 56.02%, respectively. It was concluded that the administration of the “whole-cell/ECP” combination vaccine preparation to tilapia broodstock in the 3 weeks before spawning can increase specific and non-specific immunity in the broodstock and protect the larvae from S. agalactiae infection.  相似文献   
4.
The severe mortality of fish due to the infection of megalocytivirus caused significant economic losses. Since 2011, megalocytivirus (giant gourami iridovirus (GGIV)) has become the main pathogen in giant gourami (Osphronemus goramy), particularly in West Java, Central Java and Bali. This study aimed to develop primary cell culture from spleen as the target organ for propagating megalocytivirus in vitro, which was developed by explant method with enzymatic dissociation. Optimization was carried out at incubation temperature, medium and serum concentrations. The origin of the primary cell, cell susceptibility and GGIV pathogenicity were observed. The results showed that the primary cell (GP cells) can grow well in 10% foetal bovine serum L-15 medium at 27°C, which was sufficient for cell growth. PCR and BLAST analyses showed the primary cell was originated from giant gourami. In infected GP cells, cell enlargement and cell rounding were observed. Virus propagated in GP cells was highly virulent when injecting giant gourami in an artificial infection experiment. Intraperitoneal injection of diluted virus supernatant showed 100% mortality in 7–11 days post-injection and 97% mortality in 21 days post-cohabitation, with abnormalities observed in spleen and kidney. In conclusion, GP cell was successfully subcultured for more than 30 passages and susceptible to GGIV.  相似文献   
5.
Redox potential represents the intensity of anaerobic condition in the pond sediment, which may affect the dominant microbial transformations of substances, the toxins production, mineral solubility, as well as the water quality in the sediment–water interface inhabited by the shrimp. This study evaluates the effect of sediment redox potential in conjunction with stocking density on shrimp production performance, immune response and resistance against white spot syndrome virus (WSSV) infection. A completely randomized two factors experimental design was applied with three different sediment redox potential, i.e. ?65, ?108 and ?06 mV, and two shrimp densities, i.e. low (60 shrimp m?2) and high (120 shrimp m?2). Shrimp juveniles with an initial mean body weight of 5.32 ± 0.22 g were maintained in semi‐outdoor fibre tanks (270 L in capacity) for 35 days of experimental periods. At the bottom of each tank, 5‐cm deep soil substrate with different redox potential was added according to the treatments. The survival and biomass production were significantly reduced at ?206 mV sediment redox potential, regardless of stocking density. Highly negative sediment redox potential (?206 mV) and higher stocking density significantly reduced total haemocyte counts and phenoloxydase activity, and shrimp resistance to WSSV infection. We recommend to maintain the redox potential of pond sediment at a level of more than ?206 mV.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号