首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
水产渔业   4篇
  2009年   2篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 375 毫秒
1
1.
2.
The existence of a food-entrainable circadian oscillator (FEO) was examined in goldfish Carassius auratus. Single goldfish were exposed to light–dark (LD) 12:12 (lights on 06:00–18:00 h) and fed at 12:00 h (phase I). The photoperiod regime was shifted to constant light (LL) (phase II). The fish were then fed at 06:00 or at 18:00 h (phase III), and all fish were fasted (phase IV). In both groups, three out of eight fish exhibited food-anticipatory activity (FAA) in phases II and III, the free-running period (τ) of locomotor activity was approximately 24.0 h, and circadian rhythms of locomotor activity started to free-run from the previous FAA in phase IV, indicating the existence of an FEO. Next, single goldfish were exposed to LD 12:12 and were fed twice daily at 12:00 and 00:00 h (phase I). The photoperiod regime was shifted to LL (phase II), and the fish were fasted (phase III). In phase II, FAA was observed in three out of six fish for both feeding times. In phase III, a circadian rhythm of locomotor activity was observed in five fish, and circadian rhythms started to free-run from the previous feeding time (either 12:00 or 00:00 h) in three fish. These results suggest that individual goldfish can remember two daily feeding times.  相似文献   
3.
Self-feeding of grouped ayu Plecoglossus altivelis altivelis was examined under an artificial light-dark (LD) cycle and natural day length using a trigger with a photosensitive sensor. In Experiment 1, approximately 15 juvenile fish (mean body weight, 0.6 g) were kept in 60-L glass tanks (four tanks) under LD 12∶12 (lighting period 06∶00–18∶00 hours) and self-feeding and locomotor activities were simultaneously recorded. Self-feeding was detected within one day and feeding activities were strongly synchronized to the LD cycle, with almost strictly diurnal feeding (98.2%). Although locomotor activities in the upper part of the tank were also greatest during the light phase (76.8%), the activity profiles were different from those of self-feeding, suggesting the validity of the photosensitive sensor. In Experiment 2,25 fish (mean body weight, 15 g) were kept in outdoor 1000-L tanks (four tanks) under natural day length and water temperatures in May, and self-feeding was recorded from mid-August. Stable self-feeding was observed from early September in all the tanks. Nearly all food demands were diurnal, and usually crepuscular. Somatic growth was seen in all tanks. These results demonstrate that the self-feeding system using a photosensitive sensor is applicable for grouped juvenile ayu as small as 0.6 g and adult fish reared under natural conditions.  相似文献   
4.
The self-feeding activity of the barfin flounder (Verasper moseri) was examined under natural photoperiod and temperature. The experiment, carried out over 12 weeks from September to December, involved tagged fish (mean body weight: 371 g) reared in three 1000-l tanks (3 or 5 fish per tank) with a self-feeder device. The sensor comprised a switch and trigger string with a bead. Self-feeding activity was recorded in all tanks from day 1. The fish fed mostly at night. Strong positive correlations were observed between the number of daily feeder activations and water temperature/photoperiod, and all fish grew during the experiment. These results demonstrate that barfin flounder can operate self-feeding systems and it is suggested that self-feeding activity is influenced by photoperiod and water temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号