首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   2篇
畜牧兽医   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
ABSTRACT: Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetii. The control of this infection in cattle is crucial: infected ruminants can indeed encounter reproductive disorders and represent the most important source of human infection. In the field, vaccination is currently advised in infected herds but the comparative effectiveness of different vaccination protocols has never been explored: the duration of the vaccination programme and the category of animals to be vaccinated have to be determined. Our objective was to compare, by simulation, the effectiveness over 10 years of three different vaccination strategies in a recently infected dairy cattle herd.A stochastic individual-based epidemic model coupled with a model of herd demography was developed to simulate three temporal outputs (shedder prevalence, environmental bacterial load and number of abortions) and to calculate the extinction rate of the infection. For all strategies, the temporal outputs were predicted to strongly decrease with time at least in the first years of vaccination. However, vaccinating only three years was predicted inadequate to stabilize these dynamic outputs at a low level. Vaccination of both cows and heifers was predicted as being slightly more effective than vaccinating heifers only. Although the simulated extinction rate of the infection was high for both scenarios, the outputs decreased slower when only heifers were vaccinated.Our findings shed new light on vaccination effectiveness related to Q fever. Moreover, the model can be further modified for simulating and assessing various Q fever control strategies such as environmental and hygienic measures.  相似文献   
3.
4.
Between 2007 and 2009, the largest human Q fever epidemic ever described occurred in the Netherlands. The source was traced back to dairy goat farms, where abortion storms had been observed since 2005. Since one putative cause of these abortion storms is the intensive husbandry systems in which the goats are kept, the objective of this study was to assess whether these could be explained by herd size, reproductive pattern and other demographic aspects of Dutch dairy goat herds alone. We adapted an existing, fully parameterized simulation model for Q fever transmission in French dairy cattle herds to represent the demographics typical for Dutch dairy goat herds. The original model represents the infection dynamics in a herd of 50 dairy cows after introduction of a single infected animal; the adapted model has 770 dairy goats. For a full comparison, herds of 770 cows and 50 goats were also modeled. The effects of herd size and goat versus cattle demographics on the probability of and time to extinction of the infection, environmental bacterial load and abortion rate were studied by simulation. The abortion storms could not be fully explained by demographics alone. Adequate data were lacking at the moment to attribute the difference to characteristics of the pathogen, host, within-herd environment, or a combination thereof. The probability of extinction was higher in goat herds than in cattle herds of the same size. The environmental contamination was highest within cattle herds, which may be taken into account when enlarging cattle farming systems.  相似文献   
5.
A good knowledge of the specificities of the animal trade network is highly valuable to better control pathogen spread on a large regional to transnational scale. Because of their temporal dynamical nature, studying multi-annual datasets is particularly needed to investigate whether structural patterns are stable over the years. In this study, we analysed the French cattle movement network from 2005 to 2009 for different spatial granularities and temporal windows, with the three-fold objective of exploring temporal variations of the main network characteristics, computing proxies for pathogen spread on this network, which accounts for its time-varying properties and identifying specificities related to the main types of animals and farms (dairy versus beef). Network properties did not qualitatively vary among different temporal and spatial granularities. About 40% of the holdings and 80% of the communes were directly interconnected. The width of the aggregation time window barely impacted normalised distributions of indicators. A period of 8–16 weeks would suffice for robust estimation of their main trends, whereas longer periods would provide more details on tails. The dynamic nature of the network could be seen through the small overlap between consecutive networks with 65% of common active nodes for only 3% of common links over 2005–2009. To control pathogen spread on such a network, by reducing the largest strongly connected component by more than 80%, movements should be prevented from 1 to 5% of the holdings with the highest centrality in the previous year network. The analysis of breed-wise and herd-wise subnetworks, dairy, beef and mixed, reveals similar trends in temporal variation of average indicators and their distributions. The link-based backbones of beef subnetworks seem to be more stable over time than those of other subnetworks. At a regional scale, node reachability accounting for time-respecting paths, as proxy of epidemic burden, is greater for a dairy region than for a beef region. This highlights the importance of considering local specificities and temporal dynamics of animal trade networks when evaluating control measures of pathogen spread.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号