首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
综合类   4篇
畜牧兽医   12篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1993年   2篇
  1946年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
We hypothesized that the number of microscopic follicles present in the ovaries of cattle selected for twin births (Twinner) would be greater than in the ovaries of contemporary Controls. Ovaries were collected from seven Control and seven Twinner cows at slaughter. The number of Small (1 to 3.9 mm), Medium (4 to 7.9), and Large (> 8 mm) surface follicles was counted and one ovary was fixed for histological evaluation. Fifty to sixty consecutive 6-microm slices were taken from a piece of cortical tissue, approximately 1 cm x 1 cm in area, located between the surface follicles. Microscopic follicles were classified as primordial (oocyte surrounded by a single layer of squamous pregranulosa cells), primary (oocyte surrounded by a single layer of one or more cuboidal granulosa cells), secondary (oocyte surrounded by two or more layers of granulosa cells), or tertiary (oocyte surrounded by multiple layers of granulosa cells with initiation of antrum formation to < or = 1 mm in diameter). The total number of follicles was counted in 200 fields (2 mm x 2 mm) per ovary. A field containing no follicles was classified as empty. There were significantly more secondary follicles in Twinner compared with Control ovaries (12.9 vs 6.3; P < .05). Twinners also tended to have more small surface follicles (35.4 vs 49.0; P < 0.1). We conclude that ovaries of Control and Twinner cows do not differ in the number of primordial follicles or in the number of follicles activated into the growing pool; however, Twinner cows are able to maintain more growing follicles at the secondary and subsequent stages of development.  相似文献   
3.
4.
5.
Previous research revealed that treatment with vitamin A approximately 5 d before ovulation may increase litter size in weaned sows and improve embryonal survival in gilts fed high-energy diets that reduced embryonal survival. For the current study, the hypothesis was that administration of vitamin A before ovulation would alter development of follicles and oocytes in a way favorable to enhanced embryonal survival. (Landrace x Large White) x (Duroc x Hampshire) gilts (n = 44) were fed 11.0 Mcal ME x gilt(-1) x d(-1) beginning 7 d after second estrus and given (i.m.) corn oil or 1 x 10(6) IU of vitamin A (retinyl palmitate) on d 15 after second estrus. Gilts were checked for estrus every 4 h, mated naturally at third estrus, and assigned randomly to undergo midventral laparotomy beginning at 24 to 28, 28 to 32, 32 to 36, or 36 to 40 h after onset of third estrus. At laparotomy, ovulated oocytes and early-stage embryos were recovered from oviducts, and ovaries were removed for aspiration of oocytes and granulosa cells from unovulated follicles. Oocytes and embryos were stained for assessment of stage of development. Granulosa cells were cultured to assess their ability to secrete progesterone. Follicular fluid was assayed for progesterone, estradiol-17beta, IGF-I, and PGF2alpha. Treatment with vitamin A altered development of oocytes and embryos by decreasing the percentage at the germinal vesicle stage and increasing the percentage at advanced stages. Mean stage of development was increased by vitamin A, but variation in stage was decreased. Among follicles matched by meiotic stage of oocyte, follicular fluid concentrations of progesterone, IGF-I, and PGF2alpha were greater in vitamin A-treated gilts than in controls, but treatment with vitamin A in vivo did not affect LH-stimulated or unstimulated secretion of progesterone by granulosa cells in vitro. These data provide evidence that vitamin A may influence embryonic development by advancing resumption of meiosis and altering follicular hormonal environment during follicle maturation.  相似文献   
6.
The expression of melatonin type 1 (MT1) and FSH (FSHR) receptors in caprine ovaries and the effects of these hormones on the in vitro development of isolated pre‐antral follicles were evaluated. Follicles (≤200 μm) were cultured for 12 days in α‐MEM (control) or melatonin (100 or 1000 pg/ml) or sequential melatonin medium (100 pg/ml: from day 0 to day 6; 1000 pg/ml: from day 6 to day 12; experiment 1) and in control or sequential FSH (100 ng/ml from day 0 to day 6; 500 ng/ml from day 6 to day 12) or sequential melatonin or this latter plus sequential FSH (experiment 2). MT1 and FSHR expressions were observed in granulosa cells from secondary and antral follicles. The oocytes from primordial and primary follicles also express FSHR. Sequential melatonin increased the percentage of normal follicles and oocyte recovery compared with the control or melatonin (1000 pg/ml) at day 12. In experiment 2, all the treatments increased the normal follicles and growth compared with the control. In conclusion, this study demonstrated the presence of MT1 and FSHR in caprine ovaries. The addition of increased concentrations of melatonin (sequential medium) or FSH can be used to promote the in vitro development of caprine pre‐antral follicles.  相似文献   
7.
Lasing action in organic vertical-cavity surface-emitting laser (OVCSEL) structures is demonstrated. Optically pumped OVCSELs with an active layer composed of a thin-film organic semiconductor tris-(8-hydroxyquinoline) aluminum (Alq3) doped with DCM laser dye produced very narrow linewidth (0.2 +/- 0.1 angstrom), high-power (3 watts) emission that could be varied in different devices from orange to red. The efficient energy transfer from Alq3 to DCM results in a threshold input energy of 300 microjoules per square centimeter. An operational lifetime >10(6) laser pulses was achieved for a device operated well above threshold in atmosphere. The linewidths above threshold are Fourier transform-limited and could potentially be narrowed further.  相似文献   
8.
9.
In this study we measured protein concentrations of insulin-like growth factor (IGF)-I and IGF binding proteins (IGFBPs) 2-5 in porcine corpora lutea (CLs) throughout the estrous cycle (Experiment 1), and examined the effects of IGFBP-3 and IGFBP-3 antibody (AB) on luteal progesterone (P4) secretion in vitro (Experiment 2). For Experiment 1, (CLs) and serum were collected on days (D) 4, 7, 10, 13, 15 and 16 of the estrous cycle (n = 5 animals per day). IGF-I was extracted from CLs and sera, and measured by radioimmunoassay (RIA). IGFBPs were measured in CLs by ligand blots. For Experiment 2, CLs (from Experiment 1) were enzyme dissociated and luteal cells cultured (24 h) in Medium 199 (M199) containing (0-500 ng/ml) IGFBP-3 (+/-IGF-I; 100 ng/ml), or (0-10 microg/ml) IGFBP-3 AB. P4 in media was measured by RIA. In Experiment 1, luteal IGF-I concentrations (ng/g tissue) were maximal on day 4 and gradually decreased thereafter. Serum IGF-I concentrations (ng/ml) were highest on days 4 and 7, compared with days 10-15. Peak levels of luteal IGFBP-3 were also seen on days 4 and 7 of the cycle. Luteal IGFBP-2 concentrations showed a tendency to increase on day 16 (P < 0.05 versus day 10), but no significant changes in IGFBP-4 or -5 were seen. In Experiment 2, IGFBP-3 (w IGF) inhibited the steroidogenic actions of IGF-I, but had no significant actions alone (IGFBP-3 w/o IGF). Finally, IGFBP-3 AB stimulated P4 secretion on days 4 and 7, but not on days 10-16. We conclude that IGFBP-3 inhibits IGF-I actions in the porcine CL.  相似文献   
10.
Studies with sheep are important to improve our knowledge about the factors that control folliculogenesis in mammals and to explore possible physiological differences among species. The aims of this study were to characterize FGF‐2 protein expression in ovine ovaries and to verify the effect of FGF‐2 on the morphology, apoptosis and growth of ovine pre‐antral follicles cultured in vitro. After collection, one fragment of ovarian tissue was fixed for histological analysis and TUNEL analysis (fresh control). The remaining fragments were cultured for 7 days in control medium (α‐MEM+) alone or supplemented with FGF‐2 at different concentrations (1, 10, 50, 100 or 200 ng/ml). After culturing, ovarian tissue was destined to histology and TUNEL analysis, and oocyte and follicle diameters were measured. The immunostaining for FGF‐2 was observed in oocytes from primordial, primary and secondary follicles, as well as in granulosa cells of secondary and antral follicles. The percentage of normal follicles was similar among control medium, 1 and 10 ng/ml FGF‐2, and significantly higher than those observed in 50, 100 or 200 ng/ml FGF‐2. A significant increase in follicle diameter was observed when tissues were cultured in 10, 50, 100 or 200 ng/ml FGF‐2 compared with the fresh control and the other treatments. Similar results were observed for oocyte diameter in tissues cultured with 50, 100 or 200 ng/ml FGF‐2 (p < 0.05). However, the percentage of apoptotic cells only decreased (p < 0.05) in ovarian tissues cultured in 1 or 10 ng/ml FGF‐2 compared with the control medium and other FGF‐2 treatments. In conclusion, this study demonstrated the presence of FGF‐2 in ovine ovaries. Furthermore, 10 ng/ml FGF‐2 inhibits apoptosis and promotes ovine follicle growth. As the sheep ovary is more similar to that of humans, the culture system demonstrated in this work seems to be an appropriate tool for studies towards human folliculogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号