首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
林业   1篇
  1篇
畜牧兽医   1篇
  2020年   1篇
  2015年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Tropical Animal Health and Production - This study examined the analysis of personal and production performance of broiler farming in 10 cities of central Punjab (Lahore, Sheikhupura, Kasur, Okara,...  相似文献   
2.
3.
Bacteria containing ACC-deaminase in the vicinity of roots may influence plant growth by modifying root architecture through their potential to regulate ethylene synthesis in plant roots. Approximately 138 isolates capable of utilizing ACC as the sole source of N were isolated from the rhizosphere soil of chickpea (Cicer arietinum L.) plants. Under axenic conditions, some rhizobacterial isolates were highly effective in increasing root length (up to 2.08 fold), number (up to 3.7 fold) and length (up to 3.9 fold) of lateral roots, and root biomass (up to 83%) of chickpea as compared to uninoculated control. Serratia proteamaculans strain J119 was found to be the most effective plant growth promoting rhizobacterium (PGPR) in improving root and shoot growth, nodulation and grain yield of chickpea as compared to respective controls in growth pouches, pot and field trials. A highly significant direct correlation (r = 0.99) was observed between number of lateral roots under axenic conditions (jar trial) and number of nodules per plant in pot and field trials. Interestingly, S. proteamaculans J119 also exhibited highest ACC-deaminase activity in addition to root colonization compared to other tested strains. The results of this study demonstrated that changes in root growth and architecture (particularly lateral roots) as a result of inoculation with PGPR containing ACC-deaminase are crucial for improving growth, yield and nodulation of chickpea under field conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号