首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
林业   1篇
  15篇
畜牧兽医   3篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2013年   13篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
Six year-old Japanese pear (Pyrus seratina Reheder cv. Kosui) trees grafted on P. serotina cv. Nihonyamanashi were grown in containers filled with Granite Regosol under glasshouse conditions. At different stages of fruit growth, pear trees were exposed to an elevated CO2 concentration (130 Pa CO2 ) along with a control (35 Pa CO2). For one group of plants, CO2 enrichment was applied for 79 d from 52 d after full bloom (DAB) to fruit maturity (long-term CO2 enrichment) and for another group the same treatment was applied for 35 d from 96 DAB to fruit maturity (short-term CO2 enrichment). The effects of the elevated CO2 concentration on vegetative growth, mineral contents, and fruit production and quality were examined. Long-term CO2 enrichment enhanced vegetative growth, without any significant effect on the mineral contents in either flower bud or fruit except for a remarkable increase in the K content. Long-term CO2 enrichment increased the fruit size and fresh weight, but had no significant effect on the fruit quality. On the other hand, the short-term CO2 enrichment did not induce any significant change in the fruit size but increased the fruit sugar concentration. Along with the reduction of the sorbitol concentration in fruit, the fructose and sucrose concentrations increased and these changes occurred earlier at elevated CO2 than at ambient CO2 concentrations. From these results, we concluded that the effect of CO2 enrichment on fruit growth varies depending upon the growth stages of fruit: during the initial and fruitlet stages when fruit expansion occurs, CO2 enrichment increases the fruit size, whereas, during maturation when fruit expansion has slowed down and sugar accumulation in fruit is active, it increases the fruit sugar concentration.  相似文献   
3.
This study aimed to investigate the effects of high and low levels of energy intake during the entire gestation period on the skeletal muscle development, organ development, and adipose tissue accumulation in fetuses of Wagyu (Japanese Black) cows, a breed with highly marbled beef. Cows were allocated to a high-nutrition (n = 6) group (fed 120% of the nutritional requirement) or low-nutrition (n = 6) group (fed 60% of the nutritional requirement). The cows were artificially inseminated with semen from the same sire, and the fetuses were removed by cesarean section at 260 ± 8.3 days of fetal age and slaughtered. The whole-body, total muscle, adipose, and bone masses of the fetal half-carcasses were significantly higher in the high-nutrition group than the low-nutrition group (p = 0.0018, 0.009, 0.0004, and 0.0362, respectively). Fifteen of 20 individual muscles, five of six fat depots, nine of 17 organs, and seven of 12 bones that were investigated had significantly higher masses in the high-nutrition group than the low-nutrition group. The crude components and amino acid composition of the longissimus muscle significantly differed between the low- and high-nutrition groups. These data indicate that maternal nutrition during gestation has a marked effect on the muscle, bone, and adipose tissue development of Wagyu cattle fetuses.  相似文献   
4.
The response of two leguminous plants Alhagi pseudoalhagi and Vigna radiata to seawater salinity was studied over a period of 30 d. The growth of Vigna radiata was markedly and gradually reduced by increasing salinity levels, whereas that of Alhagi pseudoalhagi was promoted at 9.1 and 16.2 dS m-1 salinity but then was slightly reduced at 28.2 dS m-1 salinity. These results indicate that Alhagi pseudoalhagi belongs to the group of halophytic plants. Seawater salinity caused changes in the membrane permeability measured as electrolyte leakage in both plants. Alhagi pseudoalhagi maintained a lower membrane permeability than Vigna radiata. With increasing salinity levels, the membrane permeability decreased in Alhagi pseudoalhagi, whereas, in Vigna radiata it slightly increased at 9.1 dS m-1. The leaf water potential and the osmotic potential decreased in both plants along with the seawater salinity levels. However, the turgor potential and osmotic adjustment in Alhagi pseudoalhagi were maintained at a higher level than in Vigna radiata. The contributions of organic and inorganic solutes to the osmotic adjustment differed: Alhagi pseudoalhagi achieved osmotic adjustment through Cl- and Na+ uptake from the substrate, while the contribution of K+, Ca2+, and organic solutes to the osmotic adjustment was limited. These results suggest that the differences in salt tolerance between Alhagi pseudoalhagi and Vigna radiata can not be due to differences in specific-ion effects, but may be related to some factors involved in membrane permeability and osmotic adjustment.  相似文献   
5.
The composition and contents of nutritional factors such as proteins, lipids, carbohydrates, fibers, amino acids, and antinutritional factors such as trypsin inhibitors, phytic acid, and tannins were compared in soybean and fababean seeds with emphasis placed on the nutritional improvement of the seeds by cortex removal. Protein hydrolysis analysis for both whole seeds and seed with cortex removed revealed the presence of a large amount of lysine, arginine, aspartic acid, glutamic acid, glycine, and leucine while these seeds contained a low level of tryptophan, cystine, and methionine. Some antinutritional factors such as trypsin inhibitors, phytic acid, and tannins were detected in soybean and fababean seeds: phytic acid content and trypsin inhibitor activity were higher in soybean seeds than in fababean seeds while the difference in the tannin content was less pronounced. It was found that most of the tannins occurred in the cortex of the soybean and fababean seeds. Tannins are polyphenolic compounds that readily form indigestible complexes with proteins and other macromolecules under specific environmental conditions. By removal of the cortex, tannins were almost completely eliminated without changes in the protein composition and amino acids. From these results, it is assumed that since soybean and fababean seeds contained a high concentration of antinutritional factors in the cortex such as tannins, the utilization of the legume seeds after removal of all of the cortex is suitable for human diet or industrial products.  相似文献   
6.
Distribution of aluminum (Al) within plant components and Al-induced changes in cell wall polysaccharides in root tips of Eucalyptus camaldulensis Dehnh. seedlings were compared with those of Melaleuca cajuputi Powell. In E. camaldulensis , 0.5 mM Al (pH 4.2 for 40 d) reduced plant dry weight by 50%, increased callose concentration in the root tips and induced leaf necrosis. In comparison with M. cajuputi , Al concentrations were higher in roots and leaves of E. camaldulensis on both a fresh weight basis and in the cell sap, but were lower in the cell wall. Al increased pectin, hemicellulose and cellulose concentration in the cell walls of E. camaldulensis root tips. Al-induced leaf necrosis and growth reduction in E. camaldulensis is discussed in the context of potentially toxic concentrations of Al in plant tissue and changes in polysaccharide content which could reduce water and nutrient uptake and cell wall extensibility in roots.  相似文献   
7.
Leguminous plant Alhagi pseudoalhagi was subjected to 0 (control), 50, 100, and 200 mM NaCI treatments during a 30 d period to examine the mechanism of tolerance to salinity. Plant dry weight, net CO2 assimilation rate, leaf stomatal conductance, intercellular CO2 concentration, and solute concentration in leaves, stems, and roots were determined. Total plant weight in the 50 mM treatment was 170% of that of the control after 10 d of treatment. Total plant weight was lower in the 100 and 200 mM treatments than in the control. The leaf CO2 assimilation rate was approximately 150% of that of the control in the 50 mM treatment, but was not affected significantly by 100 mM of NaCI, while it was reduced to about 60% of that the control in the 200 mM treatment. Similarly stomatal conductance was consistent with the CO2 assimilation rate regardless of the treatments. Intercellular CO2 concentration was lower in the NaCI-treated plants than in the control. Changes in CO2 assimilation rate due to salinity stress could be mainly associated with stomatal conductance and the carboxylation activity. Although the leaf Na+ concentration increased to 900 mmol kg-1 dry weight in the 200 mM treatment compared to 20 mmol kg-1 in the control, the plants did not die and continued to grow at such a high leaf Na+ concentration. Uptake and transportation rates of Na+, Ca2+, Mg2+, and K+, and the accumulation of N were promoted by 50 mM NaCI. Na+ uptake rate continued to increase in response to external NaCI concentration. However, the uptake and transportation rates of Ca2+, Mg2+, and K+ behaved differently under 100 and 200 mM salt stress. The results suggest that A. pseudoalhagi is markedly tolerant to salinity due mainly to its photosynthetic activity rather than to other physiological characteristics.  相似文献   
8.
Siratro (Macroptilium atropurpureum), desmodium (Desmodium intortum), and soybean (Glycine max) were grown in pots with or without irrigation for 20 d at the vegetative growth stage in order to examine the effects of water stress on the leaf water potential, stomatal conductance, biomass production, biological nitrogen fixation, and nitrogen accumulation. Whole plant weight decreased under water stress conditions and the decrease was less pronounced in siratro than in desmodium and soybean. Decrease in total leaf area was the largest and dry matter partition to stem and petioles was the highest in siratro. Decrease in leaf water potential was lower in desmodium and soybean than in siratro. Although water stress decreased biological nitrogen fixation in all the species, the decrease was relatively less pronounced in siratro than in desmodium and soybean. Whole plant nitrogen concentration was higher in siratro than in soybean and desmodium. The results indicated that siratro is more tolerant to water stress than soybean and desmodium. This could be partially attributed to the maintenance of a higher water potential and higher biological nitrogen fixation by siratro under water stress conditions.  相似文献   
9.
Three tomato cultivars were used to examine the influence of the genetic background on the regeneration efficiency. White embryonic calli were formed within two weeks of culture. Shoots emerged either directly from the explant or indirectly from the embryonic callus. Multiple adventitious shoots were formed by clonal propagation of somatic embryos in the presence of 2 mg zeatin L-1. The meristematic end of the hypocotyl of the cultivar Pontaroza showed a high regeneration frequency (70.2%) compared with the cotyledonary leaf explant (35.3%). The plants grown in the green house and the regenerants obtained showed a similar peroxidase banding pattern. The combined analysis of variance indicated that the difference in shoot induction between cultivars was highly significant. Shoot induction frequency was 57.2%, 43.5%, and 35.5% for the cultivars UC-97, Pontaroza, and Zuishi, respectively. The regeneration frequency was 50%, 28%, and 20% for the cultivars UC-97, Pontaroza, and Zuishi, respectively. The observed differences in shoot induction between cultivars were due to the genetic difference between them.  相似文献   
10.
We investigated if probiotic supplementation could improve the health and reproductive performance of unvaccinated lactating sows infected with porcine epidemic diarrhea (PED) virus. Twenty unvaccinated pregnant sows were equally allocated to probiotic‐supplemented (P) and control (C) groups. For the experiment, 15 g/day of probiotic compound BIO‐THREE PZ was given to P sows. Reproductive performance was checked daily. The number of neonates fostered by each sow was maintained at eight throughout the experiment. Individual milk production post‐parturition was measured twice. Milk protein and fat ratios were determined by a milk analyzer. Total immunoglobulin (Ig) A and G concentrations were measured by ELISA. At day 7 post‐parturition, the body weight of P sows was 10 kg higher than that of C sows, and at day 3 post‐parturition, P sows produced more milk (+2 kg) and had a higher IgA concentration in whey than did C sows (< .05). Finally, unlike C sows, P sows tended to return to estrus faster, and had larger piglets at birth with a lower mortality percentage during early days of suckling. In conclusion, probiotic compound BIO‐THREE PZ helped strengthen the immune system of unvaccinated, PED‐infected sows and improved their reproductive performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号