首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   76篇
林业   63篇
农学   35篇
基础科学   2篇
  135篇
综合类   102篇
农作物   60篇
水产渔业   107篇
畜牧兽医   400篇
园艺   20篇
植物保护   111篇
  2023年   15篇
  2022年   31篇
  2021年   59篇
  2020年   51篇
  2019年   55篇
  2018年   42篇
  2017年   33篇
  2016年   35篇
  2015年   32篇
  2014年   37篇
  2013年   42篇
  2012年   63篇
  2011年   60篇
  2010年   39篇
  2009年   30篇
  2008年   40篇
  2007年   41篇
  2006年   32篇
  2005年   30篇
  2004年   32篇
  2003年   28篇
  2002年   18篇
  2001年   11篇
  2000年   11篇
  1999年   14篇
  1998年   8篇
  1997年   5篇
  1995年   7篇
  1993年   3篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1980年   4篇
  1979年   3篇
  1971年   4篇
  1970年   6篇
  1969年   6篇
  1967年   6篇
  1908年   2篇
  1902年   3篇
  1900年   5篇
  1898年   2篇
  1897年   2篇
  1896年   3篇
  1887年   2篇
排序方式: 共有1035条查询结果,搜索用时 578 毫秒
1.
The present study investigated the replacement of soybean meal with combinations of two or three alternative protein sources in diets for pond‐raised hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. Alternative protein sources evaluated included cottonseed meal, distillers dried grains with solubles (DDGS), peanut meal, and porcine meat and bone meal (PMBM). Hybrid catfish fingerlings with a mean initial weight of 35 g/fish were stocked into 25 earthen ponds (0.04 ha) at a density of 14,826 fish/ha. Fish were fed once daily to apparent satiation for 166 d. No significant differences were observed for total diet fed, net yield, weight gain, survival, carcass yield, fillet yield, or fillet proximate composition among dietary treatments. Results show soybean meal may be completely replaced by combinations of cottonseed meal and one or two other alternative protein sources including DDGS, peanut meal, and PMBM in the diet without markedly affecting production and processing characteristics and fillet proximate composition of pond‐raised hybrid catfish. These alternative diets may be used during foodfish production when prices are favorable.  相似文献   
2.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
3.
This study examined the effects of feeding frequency (daily versus every other day [EOD]) on nutrient digestibility/availability of channel catfish, Ictalurus punctatus, reared at optimal (30 C) and suboptimal (24 C) temperatures. A 28% protein practical diet was used as the test diet, and chromic oxide was used at 0.75% of the diet as a maker. Twenty channel catfish of a mean weight of 141 g/fish were stocked into 12 flow‐through aquaria (110 L). Fish were fed daily or EOD to apparent satiation for 7 d before fecal samples were collected by the dissection method. Fish fed EOD to apparent satiation consumed more diet on days fed than those fed daily, and fish reared at 30 C consumed more diet than those reared at 24 C. Neither feeding frequency nor water temperature significantly affected apparent digestibility coefficients for energy and protein and apparent availability coefficients for total amino acids. Results show no advantage by feeding EOD over feeding daily on nutrient digestibility and diet utilization efficiency.  相似文献   
4.
Conidia ofAlternaria linicola produced on infected linseed crops were mainly dispersed by wind. The numbers of conidia in the air above linseed crops collected by a Burkard spore sampler were greatest between 1200 h and 1300 h, when the relative humidity was lowest. Although numbers of conidia collected decreased with increasing height within and above the crop canopy, air-borneA. linicola conidia were present up to 80 cm above the crop canopy. Conidia ofA. linicola were transported by wind up to at least 40 m downwind from an artificial line inoculum source, but their numbers decreased with increasing distance from the source. In 1991, 1992, and 1993, the dispersal ofA. linicola conidia above linseed crops followed a seasonal periodicity which was influenced by weather conditions and cultural practices. The greatest numbers of conidia were collected during July, August and early September and coincided with periods favourable for sporulation and with an increase in the incidence of the disease in the senescent crop. Air-borneA. linicola conidia produced on point or line inoculum sources (naturally infected linseed stem debris) were responsible for the spread of the disease in linseed crops. In 1992 and 1993, the disease was first detected downwind from the sources, but by the end of the growing seasons, it had spread in all directions and up to 20 m and 60 m from the sources, respectively. Disease gradients were initially steep near the inoculum sources but they became flatter with time due to the secondary spread of the disease.  相似文献   
5.
The effect of take-all root lesions on nitrate uptake of wheat was investigated in two experiments under controlled conditions. Plants were supplied with a nutrient solution labelled with 15N during stem elongation and flowering to assess the distribution of the isotopic tracer in the different plant organs, and particularly in root segments located on both sides of take-all lesions. The 15N atom percentage excess measured in root segments located below lesions longer than 1 cm was reduced on average by half compared with that in healthy roots and root segments above lesions, reflecting a reduction in nitrogen uptake by these root segments. This reduction probably resulted from the invasion and breakdown of phloem vessels by the fungus hyphae, interrupting energy supply and thus the uptake process. Severely infected plants showed an increase in the uptake rate per unit of efficient root, which appeared to be a compensatory response to reduction of efficient root biomass in order to satisfy shoot nitrogen demand. However, this compensatory response was insufficient to ensure nitrogen accumulation equivalent to that of healthy plants, as reductions in nitrogen accumulated in roots and aerial parts at flowering were up to 56 and 49%, respectively, for plants with more than 50% of the root system below lesions longer than 1 cm.  相似文献   
6.
7.
The effects of growth and leaf temperature on photosynthesis were evaluated in sweet orange seedlings ( Citrus sinensis cv. Pera) infected with Xylella fastidiosa (the bacterium that causes citrus variegated chlorosis, CVC). Measurements of leaf gas exchange and chlorophyll  a fluorescence were taken at leaf temperatures of 25, 30, 35 and 40°C in healthy and infected (without visible symptoms) seedlings submitted to two temperature regimes (25/20 or 35/20°C, day/night), not simultaneously. The CO2 assimilation rates ( A ) and stomatal conductance ( g s) were higher in healthy plants in both temperature regimes. Values for A and g s of infected and healthy plants were higher in the 35/20°C regime, decreasing with leaf temperature increase. In addition, differences between healthy and infected plants were higher at 35/20°C, while no differences in chlorophyll  a fluorescence parameters were observed except for potential quantum efficiency of photosystem II, which was higher in infected plants. Low A values in infected plants were caused by low g s and probably by biochemical damage to photosynthesis. The high alternative electron sink of infected plants was another effect of reduced A . Both high growth and high leaf temperatures increased differences in A between healthy and infected plants. Therefore this feature may be partially responsible for lower growth and/or productivity of CVC-affected plants in regions with high air temperature.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号