首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
畜牧兽医   5篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Objectives of this study were to determine whether feeding high-linoleic safflower seed to gestating ewes increases cold tolerance and survival in lambs, and whether brown adipose tissue (BAT) stores in lambs are affected by prepartum safflower seed supplementation. In Trial 1, 234 gestating ewes (122 in yr 1 and 112 in yr 2; 75.5 and 81.2 +/- 0.6 kg initial BW for yr 1 and 2, respectively) were allotted randomly to one of two dietary treatments (four pens*treatment(-1)*yr(-1)). Ewes were fed alfalfa-based diets containing (DM basis) either 2.8 (LF) or 5.7% (HF) dietary fat beginning 55 (yr 1) and 42 (yr 2) +/- 1 d prepartum. In Trial 2, 40 Rambouillet cross ewes gestating twins (82.9 +/- 1.7 kg BW) were used in 2 yr (20/yr) and were fed diets containing (DM basis) either 1.9 (LF) or 4.9% (HF) dietary fat beginning 53.4 +/- 1.4 d prepartum. The basal diet was 37.5% each of grass and alfalfa hays and 25% corn silage (DM basis). Cracked safflower seeds (18% CP, 32% fat, 25.6% linoleic acid; DM basis) were used as the supplement in HF, whereas safflower meal and corn were used as the supplement in LF for both trials. At parturition, one lamb from each ewe was selected randomly for slaughter. Perirenal (PR) and pericardial (PC) BAT was excised and weighed, and the carcass was frozen for compositional analysis. In Trial 1, more lambs from HF 0.03; 15.4 vs. 5.8 +/- 2.8%), and dams survived (P = 0.03; 88.4 vs. 78.3 +/- 2.9%), fewer died due to starvation (P = there was a tendency for fewer to die due to pneumonia (P = 0.07; 0.0 vs. 1.7 +/- 0.6%). Ewes fed HF tended to wean more lambs per ewe (P = 0.09; 1.4 vs. 1.2 +/- 0.06) but had similar lamb weight weaned per ewe (P = 0.51; 23.1 +/- 1.22 kg). In Trial 2, prepartum ewe plasma NEFA and glucose concentrations increased with advancing gestation (P < 0.001). Lamb rectal temperature tended (P = 0.08) to be higher in LF lambs and tended (P = 0.06) to increase following parturition. Perirenal BAT weight did not differ among treatments (33.01 +/- 1.66 g; P = 0.28; 0.62 +/- 0.30% BW; P = 0.60). Lambs from LF dams tended (P = 0.08) to have greater PC BAT weight; however, the effect was not significant when expressed as a percentage of BW (0.13 +/- 0.007; P = 0.98). High-linoleic safflower seeds fed during the last 45 d of gestation may be beneficial in improving lamb survivability. Our data do not indicate this response was a result of increased BAT stores. More research is necessary to determine mechanisms that enhance lamb survival when high-linoleic saf-flower seed is fed during gestation.  相似文献   
2.
Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation vary across sources of field peas used in this study. Additionally, because of source variability, nutrient analysis and animal requirements should be considered when field pea is incorporated into beef cattle diets. Processing field pea does not improve performance of growing steers. Supplementation of field pea to gestating cows consuming medium-quality grass hay increased total DMI. Overall, our data indicate field pea can be used in a wide variety of beef cattle diets.  相似文献   
3.
Seventy-two (36 in each of two consecutive years) lactating, British-crossbred cows (609 +/- 19 kg) were used to evaluate effects of feeding a feather meal-blood meal combination on performance by beef cows fed grass hay. Bromegrass hay (9.6% CP, DM basis) was offered ad libitum and intake was measured daily in individual Calan electronic headgates. Acclimation to Calan gates began approximately 20 d after parturition, and treatments were initiated 21 d later. Cows were assigned randomly to one of four treatments (DM basis) for 60 d: 1) nonsupplemented control (CON), 2) energy control (ENG; 790 g/d; 100% beet pulp), 3) degradable intake protein (DIP; 870 g/d; 22% beet pulp and 78% sunflower meal), or 4) undegradable intake protein (UIP; 800 g/d; 62.5% sunflower meal, 30% hydrolyzed feather meal, and 7.5% blood meal). Net energy concentrations of supplements were formulated to provide similar NE(m) intakes (1.36 Mcal/d). The DIP and UIP supplements were calculated to supply similar amounts of DIP (168 g/d) and to supply 64 and 224 g/d of UIP, respectively. Forage DMI (kg/d) decreased in supplemented vs. nonsupplemented (P = 0.03) and DIP vs. UIP (P = 0.001); however, when expressed as a percentage of BW, forage DMI was not different (P = 0.23). Supplemented cows tended (P = 0.17) to lose less BW than CON. Body condition change was not affected (P = 0.60) by postpartum supplementation. No differences were noted in milk production (P = 0.29) or in calf gain during the supplementation period (P = 0.74). Circulating insulin concentrations were not affected by treatment (P = 0.42). In addition, supplementation did not affect circulating concentrations of NEFA (P = 0.18) or plasma urea nitrogen (P = 0.38). Results of the current study indicate that supplementation had little effect on BW, BCS, milk production, or calf BW when a moderate-quality forage (9.6% CP) was fed to postpartum, winter-calving cows in optimal body condition (BCS > 5). Supplemental UIP did not enhance cow performance during lactation. Forage UIP and microbial protein supply were adequate to meet the metabolizable protein requirements of lactating beef cows under the conditions of this study.  相似文献   
4.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号