首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
畜牧兽医   7篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Mao pomace meal (MPM) contains condensed tannins and saponins at 92 and 98 g/kg, respectively, and these substances can be used to manipulate ruminal fermentation in ruminant. Four multiparous lactating Holstein cows with 45 ± 5 days in milk were randomly assigned according to a 4 × 4 Latin square design to receive four different levels of MPM supplementation at 0, 100, 200, and 300 g/head/day, respectively. Cows were fed with concentrate diets at 1:1.5 of concentrate to milk yield ratio and urea‐treated (3%) rice straw was fed ad libitum. The results revealed that feed intake, nutrient digestibility, blood urea nitrogen, and hematological parameters were not affected by MPM supplementation (> 0.05). However, ruminal pH and propionate were increased quadratically (< 0.05) in cows receiving MPM whereas acetate, acetate to propionate ratio and estimate methane production were decreased (p < 0.05). Supplementation of MPM linearly decreased ruminal ammonia nitrogen and protozoal population at 4 hr postfeeding (p < 0.05). Milk production and milk composition were similar among treatments (p > 0.05). In conclusion, supplementation of MPM at 200 g/head/day could modify ruminal fermentation and reduce methane production without adverse effect on feed intake, digestibility, hematological parameters, and milk production in dairy cows.  相似文献   
2.
Four rumen‐fistulated dairy steers were used in a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. The main factors were two roughage‐to‐concentrate ratios (R:C, 60:40 and 40:60) and two supplementation levels of rain tree pod meal (RPM) [0 or unsupplemented and 60 g/kg of total dry matter (DM) intake]. Chopped 30 g/kg of urea‐treated rice straw was used as a roughage source. All animals received dietary according to respective R:C ratios at 25 g/kg body weight. The RPM contained condensed tannins and crude saponins at 84 and 143 g/kg of DM respectively. It was found that total volatile fatty acids (VFAs) and propionate concentrations were increased (p < 0.01), while acetate concentration, acetate‐to‐propionate ratio, CH4 production and protozoal numbers were decreased (p < 0.01) when steers were supplemented with RPM and 600 g/kg of concentrate. Allantoin excretion was found different by both R:C ratio and supplementation of RPM, with the highest value at R:C of 40:60 with 60 g/kg RPM (123.6 mmol/day) (p < 0.05). Allantoin absorption and microbial crude protein were increased (p < 0.05) with an increasing concentrate ratio. Moreover, efficiency of microbial protein synthesis was increased (p < 0.05) by feeding a higher ratio of concentrate (R:C 40:60) and supplementation of RPM. Based on this study, it is suggested that supplementation of RPM was beneficial for dairy cows fed on high roughage ratio, which could improved rumen fermentation by reducing fermentation gas loss, thus improving VFA profiles and thus enhancing efficiency of microbial protein synthesis.  相似文献   
3.
The aim of this experiment was to determine the effect of dried rumen digesta pellet levels on feed intake, digestibility, rumen ecology, and blood metabolites in swamp buffalo. Four 2-year-old male swamp buffalo with an initial body weight (BW) of 150?±?10.0 kg were randomly assigned according to a 4?×?4 Latin square design to receive four levels of dried rumen digesta pellets (DRDPs). The dietary treatments were supplementation of DRDP at 0, 50, 100, and 150 g dry matter/day, respectively. Total feed intake was significantly different among treatments (p?<?0.05) and was highest in the 150 g/day DRDP supplement (2.68 kg/day). Intakes of neutral detergent fiber (NDF) and acid detergent fiber did not affect DRDP levels, while intakes of organic matter and crude protein (CP) were altered significantly when 150 g of DRDP was used (p?<?0.05). Buffalo fed with DRDP at 150 g/day had the highest CP and NDF digestibility (p?<?0.05). DRDP supplementation did not affect rumen pH, and temperature and the concentration of ruminal ammonia–nitrogen and blood urea nitrogen were not altered among the treatments. The mean value of fungal zoospores in the buffalo was significantly different among treatments and was highest in supplementation with DRDP at 150 g. The mean value of propionic acid was significantly different at various levels of DRDP; it was highest in the group fed with 150 g DRDP (p?<?0.05). Thus, supplementation of DRDP at 150 g improved feed use and increased fungal zoospore population. In addition, DRDP feeding is recommended, since it has positive economic impacts and helps control environmental pollution.  相似文献   
4.
Tropical Animal Health and Production - The objective of this research was to evaluate the effect of feeding fresh cassava root (CR) along with a feed block containing high was to sulfur (FBS) on...  相似文献   
5.
This study investigates the effects of Terminalia chebula Retz. meal supplementation on rumen fermentation and methane (CH4) production by using an in vitro gas technique. The experimental design was a completely randomized design (CRD) and the dietary treatments were T. chebula supplementation at 0, 4, 8, 12, 16 and 20 mg with 0.5 g of roughage and concentrate ratio at 60:40. The results revealed that cumulative gas production (96 h of incubation) were higher (P < 0.01) with T. chebula supplementation at 12, 16 and 20 mg than other treatments. However, in vitro dry matter degradability (IVDMD) and in vitro organic matter digestibility (IVOMD) were not significantly different among treatments (P > 0.05). The NH3‐N concentrations tended to quadratically increase with increasing levels of T. chebula in the diet. In addition, total volatile fatty acids (VFA) and propionate concentrations were increased (P < 0.01), while acetate concentration, acetate‐to‐propionate ratio, CH4 production and protozoal populations were decreased (P < 0.01) when supplemented with T. chebula at 8, 12 and 16 mg, respectively. Based on this study, it could be concluded that supplementation of T. chebula at 12 mg could improve rumen fermentation by reducing CH4 production and protozoa populations, thus improving in vitro gas production and VFA profiles.  相似文献   
6.
7.
The objective of this study was to investigate the effects of tannins and saponins in Samanea saman on rumen fermentation, milk yield and milk composition in lactating dairy cows. Four multiparous early‐lactating dairy cows (Holstein‐Friesian cross‐bred, 75%) with an initial body weight (BW) of 405 ± 40 kg and 36 ± 8 day in milk were randomly assigned to receive dietary treatments according to a 4 × 4 Latin square design. The four dietary treatments were unsupplemented (control), supplemented with rain tree pod (S. saman) meal (RPM) at 60 g/kg, supplemented with palm oil (PO) at 20 g/kg, and supplemented with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter (DM) intake. Cows were fed with concentrate diets at a ratio of concentrate to milk yield of 1:2, and chopped 30 g/kg of urea‐treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM respectively. It was found that s upplementation with RPM and/or PO to dairy cows diets did not show negative effect on ruminal pH, blood urea nitrogen and milk urea nitrogen concentration (p > 0.05). However, supplementation with RPM resulted in lower ammonia nitrogen (NH3‐N) concentration (p < 0.05). In addition, propionic acid and milk production increased while acetic acid, acetic to propionic ratio, methane production, methanogens and protozoal population decreased with RPM and/or PO supplementation. Furthermore, addition of PO and RPO in the diets increased milk fat while supplementation of RPM resulted in greater milk protein and Fibrobacter succinogenes numbers (p < 0.05). The population of Ruminococcus flavefaciens and Ruminococcus albus were not affected by any treatments. The findings on the present study showed that supplementation with RPM and RPO to diets of cows improved the rumen environment and increased milk yield, content of milk protein and milk fat.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号