首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
综合类   2篇
水产渔业   1篇
畜牧兽医   22篇
  2020年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   2篇
  1984年   7篇
  1981年   1篇
排序方式: 共有25条查询结果,搜索用时 234 毫秒
1.
OBJECTIVE: To monitor the progression of age-related behavioral changes in dogs during a period of 6 to 18 months and to determine whether signs of dysfunction in any of 4 behavioral categories can be used to predict further impairment. DESIGN: Age-stratified cohort study. ANIMALS: 63 spayed female and 47 castrated male dogs 11 to 14 years of age. PROCEDURE: Data were collected from randomly selected dog owners who were interviewed by telephone twice at a 12- to 18-month interval; data were included if the dog had lived > or = 6 months between interviews. The interview focused on signs of impairment in the following behavioral categories: orientation in the home and yard, social interactions with human family members, house training, and the sleep-wake cycle. Dogs were determined to have impairment in 0 behavioral categories (on the basis of < or = 1 sign for each category), impairment in 1 category (> or = 2 signs of dysfunction in that category), or impairment in > or = 2 categories. RESULTS: Between interviews, 22% (16/73) of dogs that did not have impairment in a category at the time of the first interview developed impairment in that category by the time of the second interview. Forty-eight percent (13/27) of dogs that had impairment in 1 category at the time of the first interview developed impairment in > or = 2 categories by the time of the second interview and were significantly more likely to develop impairment in > or = 2 categories, compared with dogs that initially had impairment in 0 categories. Dogs with 1 sign of dysfunction in orientation were significantly more likely to develop impairment in that category, compared with dogs that had 0 signs of dysfunction in orientation. CONCLUSIONS AND CLINICAL RELEVANCE: Age-related behavioral changes in dogs are progressive. Clinicians should consider trying to predict which dogs are most likely to become progressively impaired during the subsequent 6 to 18 months.  相似文献   
2.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse.  相似文献   
3.
Astaxanthin is an extremely common antioxidant scavenging reactive oxygen species (ROS) and blocking lipid peroxidation. This study was conducted to investigate the effects of astaxanthin supplementation on oocyte maturation, and development of bovine somatic cell nuclear transfer (SCNT) embryos. Cumulus–oocyte complexes were cultured in maturation medium with astaxanthin (0, 0.5, 1.0, or 1.5 mg/l), respectively. We found that 0.5 mg/l astaxanthin supplementation significantly increased the proportion of oocyte maturation. Oocytes cultured in 0.5 mg/l astaxanthin supplementation were used to construct SCNT embryos and further cultured with 0, 0.5, 1.0 or 1.5 mg/l astaxanthin. The results showed that the supplementation of 0.5 mg/l astaxanthin significantly improved the proportions of cleavage and blastulation, as well as the total cell number in blastocysts compared with the control group, yet this influence was not concentration dependent. Chromosomal analyses revealed that more blastomeres showed a normal chromosomal complement in 0.5 mg/l astaxanthin treatment group, which was similar to that in IVF embryos. The methylation levels located on the exon 1 of the imprinted gene H19 and IGF2, pluripotent gene OCT4 were normalized, and global DNA methylation, H3K9 and H4K12 acetylation were also improved significantly, which was comparable to that in vitro fertilization (IVF) embryos. Moreover, we also found that astaxanthin supplementation significantly decreased the level of lipid peroxidation. Our findings showed that the supplementation of 0.5 mg/l astaxanthin to oocyte maturation medium and embryo culture medium improved oocyte maturation, SCNT embryo development, increased chromosomal stability and normalized the epigenetic modifications, as well as inhibited overproduction of lipid peroxidation.  相似文献   
4.
Hematologic alterations unrelated to neoplastic bone marrow involvement include polycythemia, anemia, leukocytosis, leukopenia, thrombocytosis, thrombocytopenia and coagulopathies. Serum globulin levels may be increased or decreased, depending on the type of neoplasm. Plasma fibrinogen and fibrin degradation product concentrations are usually elevated in cancer patients, whereas cancer patients with DIC have low plasma fibrinogen concentrations. Hypercalcemia can be a sequel of osseous metastases. Neoplasia may cause the nephrotic syndrome in some patients. Effusions should be examined microscopically for signs of malignancy. Elevated serum enzyme levels are not specific in neoplastic disease.  相似文献   
5.
Diagnostic value of pericardial fluid analysis in the dog   总被引:3,自引:0,他引:3  
The physical, chemical, and cytologic characteristics of 50 pericardial effusions were reviewed to determine their value to the clinician for distinguishing a variety of pericardial disorders in the dog. Pericardial fluid analysis allowed identification of chylous and bacterial pericardial effusions. Overlap in the ranges of RBC counts, nucleated cell counts, and protein concentrations between dogs with neoplastic and nonneoplastic disorders precluded identification of the cause of the effusion. Of 19 neoplastic effusions, 74% were not detected on the basis of cytologic findings and 13% of 31 nonneoplastic effusates were falsely reported as positive or suspect for a neoplasm. It was concluded that pericardial fluid analysis, including cytologic examination, did not reliably distinguish neoplastic from nonneoplastic disorders.  相似文献   
6.
MKM–OS anesthesia provides general anesthesia with minimum cardiovascular depression in experimental horses. The purpose of this study was to evaluate the effect of MKM–OS anesthesia in clinical cases. Sixty‐eight horses were anesthetized with MKM–OS anesthesia for selective or emergency surgery. The horse physical status was categorized based upon the American Society of Anesthesiologists (ASA) classification scheme. Forty‐four horses were classified as ASA I or II (low‐risk; 30 soft tissue, eight ophthalmic, and six orthopedic surgeries) and 24 horses were classified as ASA III to V (high‐risk; 24 emergency colic surgeries). All horses were administered medetomidine (0.005 mg kg–1 IV) as premedication and anesthetized with ketamine (2.5 mg kg–1 IV) and midazolam (0.04 mg kg–1 IV). The horses were orotracheally intubated and connected to a large animal breathing circuit that delivered oxygen‐sevoflurane and administered the midazolam (0.8 mg mL–1)‐ketamine (40 mg mL–1)‐medetomidine (0.05 mg mL–1) drug combination at a rate of 0.025 mL kg–1 hour–1. Surgical anesthesia was maintained by controlling the dial setting of the sevoflurane vaporizer and achieved by delivering 1.6–1.8% of end‐tidal sevoflurane concentration. All horses were mechanically ventilated during anesthesia. Hypercapnia and hypoxia were not sufficiently improved in high‐risk horses (PaCO2; low‐risk 45–53 mm Hg versus high‐risk 56–60 mm Hg, p < 0.01: PaO2 low‐risk 248–388 mm Hg versus high‐risk 95–180 mm Hg, p < 0.01). Heart rate was significantly higher in high‐risk horses (low‐risk 37–42 bpm versus high‐risk 44–73 bpm, p < 0.01). Dobutamine infusion was required in five low‐risk (11%) and 17 high‐risk horses (68%) to maintain mean arterial blood pressure >70 mm Hg. Eleven high‐risk horses died during the perioperative period (three euthanized during surgery, two died during recovery, six died after recovery). The quality of recovery was good in low‐risk horses and good to satisfactory in high‐risk horses. MKM–OS anesthesia provided excellent surgical anesthesia with minimal to mild cardiovascular depression in low risk‐horses and mild to moderate cardiovascular depression in high risk‐horses. The possibility of preserve cardiovascular function could be the advantage of MKM–OS anesthesia in high‐risk horses.  相似文献   
7.
Cattle are fed moderate amounts of long chain fatty acids (FA) with the objective to enhance lactation and growth; however, recent interest on lipid feeding to cows has focused on reproduction, immunity and health. Increasing the caloric density of the ration by fat feeding has generally improved measures of cow reproduction, but when milk yield and body weight losses were increased by fat supplementation, positive effects on reproduction were not always observed. Feeding fat has influenced reproduction by altering the size of the dominant follicle, hastening the interval to first postpartum ovulation in beef cows, increasing progesterone concentrations during the luteal phase of the oestrous cycle, modulating uterine prostaglandin (PG) synthesis, and improving oocyte and embryo quality and developmental competence. Some of these effects were altered by the type of FA fed. The polyunsaturated FA of the n-6 and n-3 families seem to have the most remarkable effects on reproductive responses of cattle, but it is not completely clear whether these effects are mediated only by them or by other potential intermediates produced during rumen biohydrogenation. Generally, feeding fat sources rich in n-6 FA during late gestation and early lactation enhanced follicle growth, uterine PG secretion, embryo quality and pregnancy in cows. Similarly, feeding n-3 FA during lactation suppressed uterine PG release, and improved embryo quality and maintenance of pregnancy. Future research ought to focus on methods to improve the delivery of specific FA and adequately powered studies should be designed to critically evaluate their effects on establishment and maintenance of pregnancy in cattle.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号